Bimetallic Ni-Fe catalysts derived from layered double hydroxides for CO methanation from syngas

Honggui Tang , Shuangshuang Li , Dandan Gong , Yi Guan , Yuan Liu

Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 613 -623.

PDF (623KB)
Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 613 -623. DOI: 10.1007/s11705-017-1664-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Bimetallic Ni-Fe catalysts derived from layered double hydroxides for CO methanation from syngas

Author information +
History +
PDF (623KB)

Abstract

Carbon deposition and sintering of active components such as nano particles are great challenges for Ni-based catalysts for CO methanation to generate synthetic natural gas from syngas. Facing the challenges, bimetallic catalysts with different Fe content derived from layered double hydroxide containing Ni, Fe, Mg, Al elements were prepared by co-precipitation method. Nanoparticles of Ni-Fe alloy were supported on mixed oxides of aluminium and magnesium after calcination and reduction. The catalysts were characterized by Brunner-Emmett-Teller (BET), X-ray diffraction, hydrogen temperature programmed reduction, inductively coupled plasma, X-ray photoelectron spectroscopy, transmission electron microscopy and thermogravimetric techniques, and their catalytic activity for CO methanation was investigated. The results show that the Ni-Fe alloy catalysts exhibit better catalytic performance than monometallic catalysts except for the Ni4Fe-red catalyst. The Ni2Fe-red catalyst shows the highest CO conversion (100% at 260–350 °C), as well as the highest CH4 selectivity (over 95% at 280–350 °C), owing to the formation of Ni-Fe alloy. In stability test, the Ni2Fe-red catalyst exhibits great improvement in both anti-sintering and resistance to carbon formation compared with the Ni0Fe-red catalyst. The strong interaction between Ni and Fe element in alloy and surface distribution of Fe element not only inhibits the sintering of nanoparticles but restrains the formation of Ni clusters.

Graphical abstract

Keywords

methanation / layered double hydroxide / bimetal Ni-Fe alloy / sintering / carbon deposition

Cite this article

Download citation ▾
Honggui Tang, Shuangshuang Li, Dandan Gong, Yi Guan, Yuan Liu. Bimetallic Ni-Fe catalysts derived from layered double hydroxides for CO methanation from syngas. Front. Chem. Sci. Eng., 2017, 11(4): 613-623 DOI:10.1007/s11705-017-1664-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bian LWang WXia RLi Z. Ni-based catalyst derived from Ni/Al hydrotalcitelike compounds by the urea hydrolysis method for CO methanation. RSC Advances, 20166: 677–686

[2]

Ma STan YHan Y. Methanation of syngas over coral reef-like Ni/Al2O3 catalysts. Journal of Natural Gas Chemistry201120(4): 435–440

[3]

Zhang JXin ZMeng XLv YTao M. Effect of MoO3  on the heat resistant performances of nickel based MCM-41 methanation catalysts. Fuel2014116: 25–33

[4]

Kopyscinski JSchiidhauer T JBiollaz S M A. Production of synthetic natural gas (SNG) from coal and dry biomass—A technology review from 1950 to 2009. Fuel201089(8): 1763–1783

[5]

Zhang G QSun T JPeng J XWang SWang S D. A comparison of Ni/SiC and Ni/Al2O3 catalyzed total methanation for production of synthetic natural gas. Applied Catalysis A, General2013462: 75–81

[6]

Mohaideen K KKim WKoo K YYoon W L. Highly dispersed Ni particles on Ru/NiAl catalyst derived from layered double hydroxide for selective CO methanation. Catalysis Communications201560: 8–13

[7]

Li JZhou LLi P CZhu Q SGao J JGu F NSu F B. Enhanced fluidized bed methanation over a Ni/Al2O3 catalyst for production of synthetic natural gas. Chemical Engineering Journal2013219: 183–189

[8]

Yan X LLiu YZhao B RWang ZWang YLiu C J. Methanation over Ni/SiO2: Effect of the catalyst preparation methodologies. International Journal of Hydrogen Energy201338(5): 2283–2291

[9]

Zhang HDong Y YFang W PLian Y X. Effects of composite oxide supports on catalytic performance of Ni-based catalysts for CO methanation. Chinese Journal of Catalysis201334(2): 330–335

[10]

Zhao A MYing W YZhang H TMa H FFang D Y. Ni-Al2O3 catalysts prepared by solution combustion method for syngas methanation. Catalysis Communications201217: 34–38

[11]

Hwang SLee JHong U GSeo J GJung J CKoh D JLim HByun CSong I K. Methane production from carbon monoxide and hydrogen over nickel-alumina xerogel catalyst: Effect of nickel content. Journal of Industrial and Engineering Chemistry201117(1): 154–157

[12]

Daniela C DSilva DLetichevsky SBorges L E PAppel L G. The Ni/ZrO2 catalyst and the methanation of CO and CO2. International Journal of Hydrogen Energy201237(11): 8923–8928

[13]

Hu D CGao J JPing YJia L HGunawan PZhong Z YXu G WGu F NSu F B. Enhanced investigation of CO methanation over Ni/Al2O3 catalysts for synthetic natural gas production. Industrial & Engineering Chemistry Research201251(13): 4875–4886

[14]

Rostrup-Nielsen J RPedersen K. Sehested. High temperature methanation: Sintering and structure sensitiviy. Applied Catalysis A. Gerneral2007330: 134–138

[15]

Mirodatos CPraliaud HPrimetm M. Deactivation of nickel-based catalysts during CO methanation and disproportionation. Journal of Catalysis, 1987107: 275–287

[16]

Liu JShen W LCui D MYu JSu Fa BXu G W. Syngas methanation for substitute natural gas over Ni-Mg/Al2O3 catalyst in fixed and fluidized bed reactors. Catalysis Communications201338: 35–39

[17]

Liu QGao J JGu F NLu X PLiu Y JLi H FZhong Z YLiu BXu G WSu F B. One-pot synthesis of ordered mesoporous Ni-V-Al catalysts for CO methanation. Journal of Catalysis2015326: 127–138

[18]

Li Z HBian LZhu Q JWang W H. Ni-Based catalyst derived from Ni/Mg/Al hydrotalcite-like compounds and its activity in the methanation of carbon monoxide. Kinetics and Catalysis201455(2): 226–233

[19]

Meng F HZhong P ZLi ZCui X XZheng H Y. Surface structure and catalytic performance of Ni-Fe catalyst for low-temperature CO hydrogenation. Journal of Chemistry20145: 1–7

[20]

Kang S HRyu J HKim J HSeo S JYoo Y DPrasad P S SLim H JByun C D. CO-methanation of CO and CO2 on the Nix-Fe1−x/Al2O3 catalysts: Effect of Fe contents. Korean Journal of Chemical Engineering201128(12): 2282–2286

[21]

Liu J GCao ASi JZhang L HHao Q LLiu Y. Nanoparticles of Ni-Co alloy derived from layered double hydroxides and their catalytic performance for CO methanation. Nano20161: 1–4

[22]

Yu YJin G QWang Y YGuo X Y. Synthesis of natural gas from CO methanation over SiC supported Ni-Co bimetallic catalysts. Catalysis Communications201331: 5–10

[23]

Tian DLiu ZLi DShi HPan WCheng Y. Bimetallic Ni-Fe total-methanation catalyst for the production of substitute natural gas under high pressure. Fuel2013104: 224–229

[24]

Kustov A LFrey A MLarsen K EJohannessen TNrskov J KChristensen C H. CO methanation over supported bimetallic Ni-Fe catalysts: From computational studies towards catalyst optimization. Applied Catalysis A, General2007320: 98–104

[25]

Rhodes CHutchings G JWard A M. Water-gas shift reaction: Finding the mechanistic boundary. Catalysis Today199523(1): 43–58

[26]

Cavani FTrifiro FVaccari A. Hydrotalcite-type anionic clays: Preparation, properties and applications. Catalysis Today199111(2): 173–301

[27]

Lebedeva OTichit DCoq B. Influence of the compensating anions of Ni/Al and Ni/Mg/Al layered double hydroxides on their activation under oxidising and reducing atmospheres. Applied Catalysis A, General1999183(1): 61–71

[28]

Feng J THe Y FLiu Y NDu Y YLi D Q. Supported catalysts based on layered double hydroxides for catalytic oxidation and hydrogenation: General functionality and promising application prospects. Chemical Society Reviews201544(15): 5291–5319

[29]

Fan G LLi FEvans D GDuan X. Catalytic applications of layered double hydroxides: Recent advances and perspectives. Chemical Society Reviews201443(20): 7040–7066

[30]

Abelló SBolshak EMontané D. Ni-Fe catalysts derived from hydrotalcite-like precursors for hydrogen production by ethanol steam reforming. Applied Catalysis A, General2013450: 261–274

[31]

Li D LKoike MWang LNakagawa YXu YTomishige K. Regenerability of hydrotalcite-derived nickel-iron alloy nanoparticles for syngas production from biomass tar. ChemSusChem20147(2): 510–522

[32]

Gao WLi C MChen HWu MHe SWei MEvans D GDuan X. Supported nickel-iron nanocomposites as a bifunctional catalyst towards hydrogen generation from N2H4·H2O. Royal Society of Chemistry201416: 1560–1568

[33]

Wang LLi D LKoike MKoso SNakagawa YXu YTomishige K. Catalytic performance and characterization of Ni-Fe catalysts for the steam reforming of tar from biomass pyrolysis to synthesis gas. Applied Catalysis A, General2011392(1-2): 248–255

[34]

Coleman L J IEpling WHudgins R RCroiset E. Ni/Mg-Al mixed oxide catalyst for the steam reforming of ethanol. Applied Catalysis A, General2009363(1-2): 52–63

[35]

Zhao LHan TWang HZhang L HLiu Y. Ni-Co alloy catalyst from LaNi1-xCoxO3 perovskite supported on zirconia for steam reforming of ethanol. Applied Catalysis B: Environmental2016187: 19–29

[36]

Tan P JGao Z HShen C FDu Y LLi X DHuang W. Ni-Mg-Al solid basic layered double oxide catalysts prepared using surfactant-assisted coprecipitation method for CO2 reforming of CH4. Chinese Journal of Catalysis201435(12): 1955–1971

[37]

Zhu Y JZhang S HChen B BZhang Z SShi C. Effect of Mg/Al ratio of NiMgAl mixed oxide catalyst derived from hydrotalcite for carbon dioxide reforming of methane. Catalysis Today2016264: 163–170

[38]

Wang W JChen Y W. Influence of metal loading on the reducibility and hydrogenation activity of cobalt/alumina catalysts. Applied Catalysis199177(2): 223–233

[39]

Tsang S CClaridge J BGreen M L H. Recent advances in the conversion of methane to synthesis gas. Catalysis Today199523(1): 3–15

[40]

Nichio NCasella MFerretti OGonzález MNicot CMoraweck BFrety R. Partial oxidation of methane to synthesis gas: Behaviour of different Ni supported catalysts. Catalysis Letters, 199642: 65–72

[41]

Claridge J BGreen M L HTsang S CYork A P EAshcroft A TBattle P D. A study of carbon deposition on catalysts during the partial oxidation of methane to synthesis gas. Catalysis Letters, 199322(4): 299–305

[42]

Audier MOberlin AOberlin MCoulon MBonnetain L. Morphology and crystalline order in catalytic carbons. Carbon, 198119(3): 217–224

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (623KB)

3597

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/