A knowledge reasoning Fuzzy-Bayesian network for root cause analysis of abnormal aluminum electrolysis cell condition

Weichao Yue , Xiaofang Chen , Weihua Gui , Yongfang Xie , Hongliang Zhang

Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 414 -428.

PDF (516KB)
Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 414 -428. DOI: 10.1007/s11705-017-1663-x
RESEARCH ARTICLE
RESEARCH ARTICLE

A knowledge reasoning Fuzzy-Bayesian network for root cause analysis of abnormal aluminum electrolysis cell condition

Author information +
History +
PDF (516KB)

Abstract

Root cause analysis (RCA) of abnormal aluminum electrolysis cell condition has long been a challenging industrial issue due to its inherent complexity in analyzing based on multi-source knowledge. In addition, accurate RCA of abnormal aluminum electrolysis cell condition is the precondition of improving current efficiency. RCA of abnormal condition is a complex work of multi-source knowledge fusion, which is difficult to ensure the RCA accuracy of abnormal cell condition because of dwindling and frequent flow of experienced technicians. In view of this, a method based on Fuzzy-Bayesian network to construct multi-source knowledge solidification reasoning model is proposed. The method can effectively fuse and solidify the knowledge, which is used to analyze the cause of abnormal condition by technicians providing a clear and intuitive framework to this complex task, and also achieve the result of root cause automatically. The proposed method was verified under 20 sets of abnormal cell conditions, and implements root cause analysis by finding the abnormal state of root node, which has a maximum posterior probability by Bayesian diagnosis reasoning. The accuracy of the test results is up to 95%, which shows that the knowledge reasoning feasibility for RCA of aluminum electrolysis cell.

Graphical abstract

Keywords

abnormal aluminum electrolysis cell condition / Fuzzy-Bayesian network / multi-source knowledge solidification and reasoning / root cause analysis

Cite this article

Download citation ▾
Weichao Yue, Xiaofang Chen, Weihua Gui, Yongfang Xie, Hongliang Zhang. A knowledge reasoning Fuzzy-Bayesian network for root cause analysis of abnormal aluminum electrolysis cell condition. Front. Chem. Sci. Eng., 2017, 11(3): 414-428 DOI:10.1007/s11705-017-1663-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Qiu Z X. Principles and Applications of Aluminum Electrolysis. Xuzhou: China University of Mining Press1998, 508–510

[2]

Gui W HWang  CXie Y F Song SMeng  Q F. Knowledge automation is a necessary method for universities to realize spanning development for process industry. China science founding2015(5): 337–342

[3]

Guo JGui  W HWen  X F. Multi-objective optimization for aluminum electrolysis production process. Journal of Central South University201243(2): 548–553

[4]

Stam M ATaylor  M PChen  J J JMulder  ARodrigo R . Common behaviour and abnormalities in aluminum reduction cells. TMS Light Metals,2008, 309–314

[5]

Majid N A A Taylor M P Chen J J J Stam M A Mulder A Young B R . Aluminum process fault detection by multiway principal component analysis. Control Engineering Practice201119(4): 367–379

[6]

Rooney J JHeuvel  L N V. Root cause analysis for beginners. Quality progress200437(7): 45–56

[7]

Doggett A M. Root cause analysis: A framework for tool selection. Quality Management Journal200512(4): 34

[8]

Demirli KVijayakumar  S. Fuzzy assignable cause diagnosis of control chart patterns. Fuzzy Information Processing Society2008, 1–6

[9]

Ruiz-Sarmiento J R Galindo C Gonzalez-Jimenez J . Scene object recognition for mobile robots through semantic knowledge and probabilistic graphical models. Expert Systems with Applications201542(22): 8805–8816

[10]

Kordy BPouly  MSchweitzer P . Probabilistic reasoning with graphical security models. Information Sciences2016342: 111–131

[11]

Wee Y YCheah  W PTan  S CWee  K K. A method for root cause analysis with a Bayesian belief network and fuzzy cognitive map. Expert Systems with Applications201542(1): 468–487

[12]

Alaeddini ADogan  I. Using Bayesian networks for root cause analysis in statistical process control. Expert Systems with Applications201138(9): 11230–11243

[13]

Weidl GMadsen  A LIsraelson  S. Applications of object-oriented Bayesian networks for condition monitoring, root cause analysis and decision support on operation of complex continuous processes. Computers & Chemical Engineering200529(9): 1996–2009

[14]

Ferreira LBorenstein  D. A fuzzy-Bayesian model for supplier selection. Expert Systems with Applications201239(9): 7834–7844

[15]

Cai BLiu  YFan Q Zhang Y Liu S Y Ji R. Multi-source information fusion based fault diagnosis of ground-source heat pump using Bayesian network. Applied Energy2014114: 1–9

[16]

Zeng S PLi  JDing L . Fault diagnosis system for 350 KA pre-baked aluminum reduction cell based on BP neural network. TMS–Light Metals2007

[17]

Taylor M PZhang  W DWills  VSchmid S . A dynamic model for the energy balance of an electrolysis cell. Chemical Engineering Research & Design199674(8): 913–933

[18]

Zhou T.Study of alumina concentration control based on intelligent characteristic model. Advanced Materials Research. Trans Tech Publications2011317: 1314–1317

[19]

Tessier JTarcy  G PBatista  EWang X . Towards on-line monitoring of alumina properties at a pot level. Light Metals2012: 633–638

[20]

Zeng S PWang  SQu Y . Control of temperature and aluminum fluoride concentration based on model prediction in aluminum electrolysis. Advances in Materials Science and Engineering20143:1–5

[21]

Kolås SStøre  T. Bath temperature and AlF3 control of an aluminum electrolysis cell. Control Engineering Practice200917(9): 1035–1043

[22]

Ayyub B MKlir  G J. Uncertainty modeling and analysis in engineering and the sciences. CRC Press2006, 3–7

[23]

Hancock J M. Bayesian network (belief network, causal network, knowledge map, probabilistic network). Dictionary of Bioinformatics and Computational Biology2004, 5–10

[24]

Pearl J. Fusion, propagation, and structuring in belief networks. Artificial Intelligence198629(3): 241–288

[25]

Bishop C M. Pattern Recognition and  Machine Learning. New York: Springer-Verlag,2006, 373–375

[26]

Kabak MBurmaoğlu  SKazançoğlu  Y. A fuzzy hybrid MCDM approach for professional selection. Expert Systems with Applications201239(3): 3516–3525

[27]

Wan S. Power average operators of trapezoidal intuitionistic fuzzy numbers and application to multi-attribute group decision making. Applied Mathematical Modelling201337(6): 4112–4126

[28]

Li PChen  GDai L Zhang L . A fuzzy Bayesian network approach to improve the quantification of organizational influences in HRA frameworks. Safety Science201250(7): 1569–1583

[29]

Dubois DPrade  H. Operations on fuzzy numbers. International Journal of Systems Science19789(6): 613–626

[30]

Hsu Y LLee  C HKreng  V B. The application of fuzzy Delphi method and fuzzy AHP in lubricant regenerative technology selection. Expert Systems with Applications201037(1): 419–425

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (516KB)

3260

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/