Effects of preparation methods on the activity of CuO/CeO2 catalysts for CO oxidation
Huanhuan Shang, Xiaoman Zhang, Jing Xu, Yifan Han
Effects of preparation methods on the activity of CuO/CeO2 catalysts for CO oxidation
CO oxidation has been investigated on three CuO/CeO2 catalysts prepared by impregnation, co-precipitation and mechanical mixing. The origin of active sites was explored by the multiple techniques. The catalyst prepared by impregnation has more highly dispersed CuO and stronger interactions between CuO and CeO2 to promote the reduction of CuO to Cu+ species at the Cu-Ce interface, leading to its highest catalytic activity. For the catalyst prepared by co-precipitation, solid solution structures observed in Raman spectra suppress the formation of the Cu-Ce interface, where the adsorbed CO will react with active lattice oxygen to form CO2, and thus it displays a lower catalytic performance. No Cu-Ce interface exists in the catalyst prepared by the mechanical mixing method due to the separate phases of CuO and CeO2, resulting in its lowest activity among the three catalysts.
CuO/CeO2 / CO oxidation / interfaces / structure-performance relationship / active sites
[1] |
Royer S, Duprez D. Catalytic oxidation of carbon monoxide over transition metal oxides. ChemCatChem, 2011, 3(1): 24–65
CrossRef
Google scholar
|
[2] |
Prasad R, Singh P. A review on CO oxidation over copper chromite catalyst. Catalysis Reviews. Science and Engineering, 2012, 54(2): 224–279
CrossRef
Google scholar
|
[3] |
McClure S M, Goodman D W. New insights into catalytic CO oxidation on Pt-group metals at elevated pressures. Chemical Physics Letters, 2009, 469(1-3): 1–13
CrossRef
Google scholar
|
[4] |
Fernández-García M, Martínez-Arias A, Salamanca L N, Coronado J M, Anderson J A, Conesa J C, Soria J. Influence of ceria on Pd activity for the CO+ O2 reaction. Journal of Catalysis, 1999, 187(2): 474–485
CrossRef
Google scholar
|
[5] |
Haruta M, Kobayashi T, Sano H, Yamada N. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chemistry Letters, 1987, 16(2): 405–408
CrossRef
Google scholar
|
[6] |
Avgouropoulos G, Ioannides T, Matralis H. Influence of the preparation method on the performance of CuO-CeO2 catalysts for the selective oxidation of CO. Applied Catalysis B: Environmental, 2005, 56(1-2): 87–93
CrossRef
Google scholar
|
[7] |
Tang X, Zhang B, Li Y, Xu Y, Xin Q, Shen W. Carbon monoxide oxidation over CuO/CeO2 catalysts. Catalysis Today, 2004, 93-95: 191–198
CrossRef
Google scholar
|
[8] |
Jia A P, Jiang S Y, Lu J Q, Luo M F. Study of catalytic activity at the CuO-CeO2 interface for CO oxidation. Journal of Physical Chemistry C, 2010, 114(49): 21605–21610
CrossRef
Google scholar
|
[9] |
Liu W, Flytzanistephanopoulos M. Total oxidation of carbon monoxide and methane over transition metal fluorite oxide composite catalysts: I. Catalyst composition and activity. Journal of Catalysis, 1995, 153(2): 304–316
CrossRef
Google scholar
|
[10] |
Kummer J T. Catalysts for automobile emission control. Progress in Energy and Combustion Science, 1980, 6(2): 177–199
CrossRef
Google scholar
|
[11] |
Schubert M M, Plzak V, Garche J, Behm R J. Activity, selectivity, and long-term stability of different metal oxide supported gold catalysts for the preferential CO oxidation in H2-rich gas. Catalysis Letters, 2001, 76(3): 143–150
CrossRef
Google scholar
|
[12] |
Schubert M M, Hackenberg S, van Veen A C, Muhler M, Plzak V, Behm R J. CO oxidation over supported gold catalysts — “inert” and “active” support materials and their role for the oxygen supply during reaction. Journal of Catalysis, 2001, 197(1): 113–122
CrossRef
Google scholar
|
[13] |
Águila G, Gracia F, Araya P. CuO and CeO2 catalysts supported on Al2O3, ZrO2, and SiO2 in the oxidation of CO at low temperature. Applied Catalysis A, General, 2008, 343(1-2): 16–24
CrossRef
Google scholar
|
[14] |
Swartz S L. Catalysis by ceria and related materials. Journal of the American Chemical Society, 2002, 124(43): 12923–12924
CrossRef
Google scholar
|
[15] |
Konysheva E Y. Reduction of CeO2 in composites with transition metal complex oxides under hydrogen containing atmosphere and its correlation with catalytic activity. Frontiers of Chemical Science and Engineering, 2013, 7(3): 249–261
CrossRef
Google scholar
|
[16] |
Trovarelli A. Catalytic properties of ceria and CeO2-containing materials. Catalysis Reviews, 1996, 38(4): 439–520
CrossRef
Google scholar
|
[17] |
Avgouropoulos G, Ioannides T, Papadopoulou C, Batista J, Hocevar S, Matralis H K. A comparative study of Pt/gamma-Al2O3, Au/alpha-Fe2O3 and CuO-CeO2 catalysts for the selective oxidation of carbon monoxide in excess hydrogen. Catalysis Today, 2002, 75(1-4): 157–167
CrossRef
Google scholar
|
[18] |
Sedmak G, Hočevar S, Levec J. Kinetics of selective CO oxidation in excess of H2 over the nanostructured Cu0.1Ce0.9O2-y catalyst. Journal of Catalysis, 2003, 213(2): 135–150
CrossRef
Google scholar
|
[19] |
Wang W W, Du P P, Zou S H, He H Y, Wang R X, Jin Z, Shi S, Huang Y Y, Si R, Song Q S, Jia C J, Yan C H. Highly dispersed copper oxide clusters as active species in copper-ceria catalyst for preferential oxidation of carbon monoxide. ACS Catalysis, 2015, 5(4): 2088–2099
CrossRef
Google scholar
|
[20] |
Cargnello M, Doan-Nguyen V V T, Gordon T R, Diaz R E, Stach E A, Gorte R J, Fornasiero P, Murray C B. Control of metal nanocrystal size reveals metal-support interface role for ceria catalysts. Science, 2013, 341(6147): 771–773
CrossRef
Google scholar
|
[21] |
Pue-On P, Meeyoo V, Rirksombooon T. Methane partial oxidation over NiO-MgO/Ce0.75Zr0.25O2 catalysts. Frontiers of Chemical Science and Engineering, 2013, 7(3): 289–296
CrossRef
Google scholar
|
[22] |
Jia A P, Hu G S, Meng L, Xie Y L, Lu J Q, Luo M F. CO oxidation over CuO/Ce1-xCuxO2-δ and Ce1-xCuxO2-δ catalysts: Synergetic effects and kinetic study. Journal of Catalysis, 2012, 289(0): 199–209
CrossRef
Google scholar
|
[23] |
Bera P, Priolkar K R, Sarode P R, Hegde M S, Emura S, Kumashiro R, Lalla N P. Structural investigation of combustion synthesized Cu/CeO2 catalysts by EXAFS and other physical techniques: Formation of a Ce1-xCuxO2-δ solid solution. Chemistry of Materials, 2002, 14(8): 3591–3601
CrossRef
Google scholar
|
[24] |
Weber W H, Hass K C, McBride J R. Raman study of CeO2. Second-order scattering, lattice dynamics, and particle-size effects. Physical Review B: Condensed Matter and Materials Physics, 1993, 48(1): 178–185
CrossRef
Google scholar
|
[25] |
Li J, Han Y, Zhu Y, Zhou R. Purification of hydrogen from carbon monoxide for fuel cell application over modified mesoporous CuO-CeO2 catalysts. Applied Catalysis B: Environmental, 2011, 108-109: 72–80
|
[26] |
McBride J R, Hass K C, Poindexter B D, Weber W H. Raman and X-ray studies of Ce1-xRExO2-y, where RE= La, Pr, Nd, Eu, Gd, and Tb. Journal of Applied Physics, 1994, 76(4): 2435–2441
CrossRef
Google scholar
|
[27] |
Vidal H, Kašpar J, Pijolat M, Colon G, Bernal S, Cordón A, Perrichon V, Fally F. Redox behavior of CeO2-ZrO2 mixed oxides: I. Influence of redox treatments on high surface area catalysts. Applied Catalysis B: Environmental, 2000, 27(1): 49–63
CrossRef
Google scholar
|
[28] |
Davó-Quiñonero A, Navlani-García M, Lozano-Castelló D, Bueno-López A, Anderson J A. Role of hydroxyl groups in the preferential oxidation of CO over copper oxide-cerium oxide catalysts. ACS Catalysis, 2016, 6(3): 1723–1731
CrossRef
Google scholar
|
[29] |
Sun S, Mao D, Yu J, Yang Z, Lu G, Ma Z. Low-temperature CO oxidation on CuO/CeO2 catalysts: The significant effect of copper precursor and calcination temperature. Catalysis Science & Technology, 2015, 5(6): 3166–3181
CrossRef
Google scholar
|
[30] |
She Y, Zheng Q, Li L, Zhan Y, Chen C, Zheng Y, Lin X. Rare earth oxide modified CuO/CeO2 catalysts for the water-gas shift reaction. International Journal of Hydrogen Energy, 2009, 34(21): 8929–8936
CrossRef
Google scholar
|
[31] |
Wang S Y, Li N, Luo L F, Huang W X, Pu Z Y, Wang Y J, Hu G S, Luo M F, Lu J Q. Probing different effects of surface MOy and Mn+ species (M= Cu, Ni, Co, Fe) for xMOy/Ce0.9M0.1-xO2-δ catalysts in CO oxidation. Applied Catalysis B: Environmental, 2014, 144: 325–332
CrossRef
Google scholar
|
[32] |
Pu Z Y, Lu J Q, Luo M F, Xie Y L. Study of oxygen vacancies in Ce0.9Pr0.1O2-δ solid solution by in situ X-ray diffraction and in situ Raman spectroscopy. Journal of Physical Chemistry C, 2007, 111(50): 18695–18702
CrossRef
Google scholar
|
[33] |
Liu Z, Wu Z, Peng X, Binder A, Chai S, Dai S. Origin of active oxygen in a ternary CuOx/Co3O4-CeO2 catalyst for CO oxidation. Journal of Physical Chemistry C, 2014, 118(48): 27870–27877
CrossRef
Google scholar
|
[34] |
Sasikala R, Varma S, Gupta N M, Kulshreshtha S K. Reduction behavior of Ce-Y mixed oxides. Journal of Materials Science Letters, 2001, 20(12): 1131–1133
CrossRef
Google scholar
|
[35] |
Yao H C, Yao Y F Y. Ceria in automotive exhaust catalysts: I. Oxygen storage. Journal of Catalysis, 1984, 86(2): 254–265
CrossRef
Google scholar
|
[36] |
Avgouropoulos G, Ioannides T. Selective CO oxidation over CuO-CeO2 catalysts prepared via the urea-nitrate combustion method. Applied Catalysis A, General, 2003, 244(1): 155–167
CrossRef
Google scholar
|
[37] |
Luo M F, Ma J M, Lu J Q, Song Y P, Wang Y J. High-surface area CuO-CeO2 catalysts prepared by a surfactant-templated method for low-temperature CO oxidation. Journal of Catalysis, 2007, 246(1): 52–59
CrossRef
Google scholar
|
[38] |
Dong Y, Yuan F, Zhu Y, Zhao L, Cai Z. Characterization and catalytic properties of mesoporous CuO/SBA-16 prepared by different impregnation methods. Frontiers of Chemical Engineering in China, 2008, 2(2): 150–154
CrossRef
Google scholar
|
[39] |
Bin F, Wei X, Li B, Hui K S. Self-sustained combustion of carbon monoxide promoted by the Cu-Ce/ZSM-5 catalyst in CO/O2/N2 atmosphere. Applied Catalysis B: Environmental, 2015, 162(0): 282–288
CrossRef
Google scholar
|
[40] |
Elmhamdi A, Castañeda R, Kubacka A, Pascual L, Nahdi K, Martínez-Arias A. Characterization and catalytic properties of CuO/CeO2/MgAl2O4 for preferential oxidation of CO in H2-rich streams. Applied Catalysis B: Environmental, 2016, 188: 292–304
CrossRef
Google scholar
|
[41] |
Martínez-Arias A, Hungría A B, Munuera G, Gamarra D. Preferential oxidation of CO in rich H2 over CuO/CeO2: Details of selectivity and deactivation under the reactant stream. Applied Catalysis B: Environmental, 2006, 65(3-4): 207–216
CrossRef
Google scholar
|
[42] |
Gamarra D, Fernández-García M, Belver C, Martínez-Arias A. Operando DRIFTS and XANES study of deactivating effect of CO2 on a Ce0.8Cu0.2O2 CO-PROX catalyst. Journal of Physical Chemistry C, 2010, 114(43): 18576–18582
CrossRef
Google scholar
|
[43] |
Chen S, Zou H, Liu Z, Lin W. DRIFTS study of different gas adsorption for CO selective oxidation on Cu-Zr-Ce-O catalysts. Applied Surface Science, 2009, 255(15): 6963–6967
CrossRef
Google scholar
|
[44] |
Martínez-Arias A, Gamarra D, Fernández-García M, Hornés A, Bera P, Koppány Z, Schay Z. Redox-catalytic correlations in oxidised copper-ceria CO-PROX catalysts. Catalysis Today, 2009, 143(3-4): 211–217
CrossRef
Google scholar
|
[45] |
Scarano D, Bordiga S, Lamberti C, Spoto G, Ricchiardi G, Zecchina A, Otero Areán C. FTIR study of the interaction of CO with pure and silica-supported copper(I) oxide. Surface Science, 1998, 411(3): 272–285
CrossRef
Google scholar
|
[46] |
Hadjiivanov K I, Kantcheva M M, Klissurski D G. IR study of CO adsorption on Cu-ZSM-5 and CuO/SiO2 catalysts: s and p components of the Cu+-CO bond. Journal of the Chemical Society, Faraday Transactions, 1996, 92(22): 4595–4600
CrossRef
Google scholar
|
[47] |
Liu P, Hensen E J M. Highly efficient and robust Au/MgCuCr2O4 catalyst for gas-phase oxidation of ethanol to acetaldehyde. Journal of the American Chemical Society, 2013, 135(38): 14032–14035
CrossRef
Google scholar
|
[48] |
Wen B, He M. Study of the Cu-Ce synergism for NO reduction with CO in the presence of O2, H2O and SO2 in FCC operation. Applied Catalysis B: Environmental, 2002, 37(1): 75–82
CrossRef
Google scholar
|
[49] |
Avgouropoulos G, Ioannides T. Effect of synthesis parameters on catalytic properties of CuO-CeO2. Applied Catalysis B: Environmental, 2006, 67(1-2): 1–11
CrossRef
Google scholar
|
[50] |
Gao Y, Xie K, Wang W, Mi S, Liu N, Pan G, Huang W. Structural features and catalytic performance in CO preferential oxidation of CuO-CeO2 supported on multi-walled carbon nanotubes. Catalysis Science & Technology, 2015, 5(3): 1568–1579
CrossRef
Google scholar
|
[51] |
Fan J, Wu X, Wu X, Liang Q, Ran R, Weng D. Thermal ageing of Pt on low-surface-area CeO2-ZrO2-La2O3 mixed oxides: Effect on the OSC performance. Applied Catalysis B: Environmental, 2008, 81(1-2): 38–48
CrossRef
Google scholar
|
[52] |
Dutta P, Pal S, Seehra M S, Shi Y, Eyring E M, Ernst R D. Concentration of Ce3+ and oxygen vacancies in cerium oxide nanoparticles. Chemistry of Materials, 2006, 18(21): 5144–5146
CrossRef
Google scholar
|
[53] |
Zhang X M, Deng Y Q, Tian P F, Shang H H, Xu J, Han Y F. Dynamic active sites over binary oxide catalysts: In situ/operando spectroscopic study of low-temperature CO oxidation over MnOx-CeO2 catalysts. Applied Catalysis B: Environmental, 2016, 191: 179–191
CrossRef
Google scholar
|
/
〈 | 〉 |