Merits and limitations of TiO2-based photocatalytic pretreatment of soils impacted by crude oil for expediting bioremediation

Yu Yang , Hassan Javed , Danning Zhang , Deyi Li , Roopa Kamath , Kevin McVey , Kanwartej Sra , Pedro J.J. Alvarez

Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 387 -394.

PDF (293KB)
Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 387 -394. DOI: 10.1007/s11705-017-1657-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Merits and limitations of TiO2-based photocatalytic pretreatment of soils impacted by crude oil for expediting bioremediation

Author information +
History +
PDF (293KB)

Abstract

Heavy hydrocarbons (HHCs) in soils impacted by crude oil spills are generally recalcitrant to biodegradation due to their low bioavailability and complex chemical structure. In this study, soils were pretreated with varying concentrations of ultraviolet radiation A (UVA) or ultraviolet radiation C (UVC) activated titanium dioxide (TiO2) (1%–5%) under varying moisture conditions (0%–300% water holding capacity (WHC)) to enhance biodegradation of HCCs and shorten remediation timeframes. We demonstrate that pretreatment of impacted soils with UVC-activated TiO2 in soil slurries could enhance bioremediation of HHCs.  Total petroleum hydrocarbon (TPH) removal after 24 h exposure to UVC (254 nm and 4.8 mW/cm2) was (19.1±1.6)% in slurries with 300% WHC and 5 wt-% TiO2. TPH removal was non-selective in the C15-C36 range and increased with moisture content and TiO2 concentration. In a 10-d bioremediation test, TPH removal in treated soil increased to (26.0±0.9)%, compared to (15.4±0.8)% for controls without photocatalytic pre-treatment. Enhanced biodegradation was also confirmed by respirometry. This suggests that addition of UVC-activated TiO2 to soil slurries can transform recalcitrant hydrocarbons into more bioavailable and biodegradable byproducts and increase the rate of subsequent biodegradation. However, similar results were not observed for soils pretreated with UVA activated TiO2. This suggests that activation of TiO2 by sunlight and direct addition of TiO2 to unsaturated soils within landfarming setting may not be a feasible approach. Nevertheless, less than 1% of UVA (7.5 mW/cm2) or UVC (1.4 mW/cm2) penetrated beyond 0.3 cm soil depth, indicating that limited light penetration through soil would hinder the ability of TiO2 to enhance soil bioremediation under land farming conditions.

Graphical abstract

Keywords

TiO2 pretreatment / bioremediation / total petroleum hydrocarbons / ultraviolet

Cite this article

Download citation ▾
Yu Yang, Hassan Javed, Danning Zhang, Deyi Li, Roopa Kamath, Kevin McVey, Kanwartej Sra, Pedro J.J. Alvarez. Merits and limitations of TiO2-based photocatalytic pretreatment of soils impacted by crude oil for expediting bioremediation. Front. Chem. Sci. Eng., 2017, 11(3): 387-394 DOI:10.1007/s11705-017-1657-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fingas M. Oil Spill Science and Technology. Houston: Gulf Professional Publishing2010, 7–48

[2]

Kuyukina M SIvshina  I BRitchkova  M IPhilp  J CCunningham  C JChristofi  N. Bioremediation of crude oil-contaminated soil using slurry-phase biological treatment and land farming techniques. Soil & Sediment Contamination200312(1): 85–99

[3]

Robles-Gonzalez I V Fava FPoggi-Varaldo  H M. A review on slurry bioreactors for bioremediation of soils and sediments. Microbial Cell Factories20087(1): 5

[4]

Tomei M CDaugulis  A JEx situ bioremediation of contaminated soils: An overview of conventional and innovative technologies. Critical Reviews in Environmental Science and Technology201343(20): 2107–2139

[5]

Brame J AHong  S WLee  JLee S H Alvarez P J J . Photocatalytic pre-treatment with food-grade TiO2 increases the bioavailability and bioremediation potential of weathered oil from the Deepwater Horizon oil spill in the Gulf of Mexico. Chemosphere201390(8): 2315–2319

[6]

Hossaini HMoussavi  GFarrokhi M . The investigation of the LED-activated FeFNS-TiO2 nanocatalyst for photocatalytic degradation and mineralization of organophosphate pesticides in water. Water Research201459: 130–144

[7]

Varner K ERindfusz  KGaglione A E V . Nano titanium dioxide environmental matters: State of the science literature review. U.S. Environmental Protection Agency2010: EPA/600/R–10/089

[8]

Fagan RMccormack  D EDionysiou  D DPillai  S C. A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Materials Science in Semiconductor Processing201642: 2–14

[9]

Uddin M TBabot  OThomas L Olivier C Redaelli M D’arienzo M Morazzoni F Jaegermann W Rockstroh N Junge H Toupance T . New insights into the photocatalytic properties of RuO2/TiO2 mesoporous heterostructures for hydrogen production and organic pollutant photodecomposition. Journal of Physical Chemistry C2015119(13): 7006–7015

[10]

Daghrir RDrogui  PRobert D . Modified TiO2 for environmental photocatalytic applications: A review. Industrial & Engineering Chemistry Research201352(10): 3581–3599

[11]

Keen O SBaik  SLinden K G Aga D S Love N G . Enhanced biodegradation of carbamazepine after UV/H2O2 advanced oxidation. Environmental Science & Technology201246(11): 6222–6227

[12]

Lee JHong  SMackeyev Y Lee CChung  EWilson L J Kim J H Alvarez P J J . Photosensitized oxidation of emerging organic pollutants by Tetrakis C-60 aminofullerene-derivatized silica under visible light I\irradiation. Environmental Science & Technology201145(24): 10598–10604

[13]

Turchi C SOllis  D F. Photocatalytic degradation of organic-water contaminants—mechanisms involving hydroxyl radical attack. Journal of Catalysis1990122(1): 178–192

[14]

Li G ZPark  SRittmann B E . Degradation of reactive dyes in a photocatalytic circulating-bed biofilm reactor. Biotechnology and Bioengineering2012109(4): 884–893

[15]

D’auria MEmanuele  LRacioppi R Velluzzi V . Photochemical degradation of crude oil: Comparison between direct irradiation, photocatalysis, and photocatalysis on zeolite. Journal of Hazardous Materials2009164(1): 32–38

[16]

Marsolek M DTorres  C IHausner  MRittmann B E . Intimate coupling of photocatalysis and biodegradation in a photocatalytic circulating-bed biofilm reactor. Biotechnology and Bioengineering2008101(1): 83–92

[17]

Park HChoi  W. Photocatalytic conversion of benzene to phenol using modified TiO2 and polyoxometalates. Catalysis Today2005101(3-4): 291–297

[18]

Al-Bastaki N M . Performance of advanced methods for treatment of wastewater: UV/TiO2, RO and UF. Chemical Engineering and Processing200443(7): 935–940

[19]

IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Solar and Ultraviolet Radiation. Lyon1992, 43–60

[20]

Li P GYue  P L. Comparison of the effectiveness of photon-based oxidation processes in a pilot falling film photoreactor. Environmental Science & Technology199933(18): 3210–3216

[21]

Li M. Combined effects of sunlight and titanium dioxide nanoparticles on dietary antioxidants and food colors. Dissertation for Doctoral Degree.  College Park : University of Maryland2014, 1–24

[22]

Magpantay G M . Photocatalytic oxidation of ethanol using macroporous titania. Dissertation for Master Degree. Baton Rouge: Louisiana State University2008, 36–56

[23]

Unosson EWelch  KPersson C Engqvist H . Stability and prospect of UV/H2O2 activated titania films for biomedical use. Applied Surface Science2013285: 317–323

[24]

Chen TDelgado  A GYavuz  B MProctor  A JMaldonado  JZuo Y Westerhoff P Krajamalhik-Brown R Rittmann B E . Ozone enhances biodegradability of heavy hydrocarbons in soil. Journal of Environmental Engineering and Science201611(1): 7–17

[25]

Plata D LSharpless  C MReddy  C M. Photochemical degradation of polycyclic aromatic hydrocarbons in oil films. Environmental Science & Technology200842(7): 2432–2438

[26]

Ge Y GSchimel  J PHolden  P A. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environmental Science & Technology201145(4): 1659–1664

[27]

Seeger EBaun  AKastner M Trapp S . Insignificant acute toxicity of TiO2 nanoparticles to willow trees. Journal of Soils and Sediments20099(1): 46–53

[28]

Khare PSonane  MPandey R Ali SGupta  K CSatish  A. Adverse effects of TiO2 and ZnO nanoparticles in soil nematode, Caenorhabditis elegans. Journal of Biomedical Nanotechnology20117(1): 116–117

[29]

Kibanova DCervini-Silva  JDestaillats H . Efficiency of clay-TiO2 nanocomposites on the photocatalytic elimination of a model hydrophobic air pollutant. Environmental Science & Technology200943(5): 1500–1506

[30]

Zhang L HLi  P JGong  Z QLi  X M. Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO2 under UV light. Journal of Hazardous Materials2008158(2-3): 478–484

[31]

Zertal ASehili  TBoule P . Photochemical behaviour of 4-chloro-2-methylphenoxyacetic acid—influence of pH and irradiation wavelength. Journal of Photochemistry and Photobiology a-Chemistry2001146(1-2): 37–48

[32]

Fujishima ARao  T NTryk  D A. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C, Photochemistry Reviews20001(1): 1–21

[33]

Umebayashi TYamaki  TItoh H Asai K. Analysis of electronic structures of 3D transition metal-doped TiO2 based on band calculations. Journal of Physics and Chemistry of Solids200263(10): 1909–1920

[34]

Bae E YChoi  W YPark  J WShin  H SKim  S BLee  J S. Effects of surface anchoring groups (Carboxylate vs. phosphonate) in ruthenium-complex-sensitized TiO2 on visible light reactivity in aqueous suspensions. Journal of Physical Chemistry B2004108(37): 14093–14101

[35]

Park H SJung  I MChoi  G HHahn  SYoo Y S Lee T. Modification of a rodent Hindlimb model of secondary Lymphedema: Surgical radicality vs. radiotherapeutic ablation. Biomed Research International20132013: 208912

[36]

Higarashi M M Jardim W E . Remediation of pesticide contaminated soil using TiO2 mediated by solar light. Catalysis Today200276(2-4): 201–207

[37]

Gu J LDong  D BKong  L XZheng  YLi X J . Photocatalytic degradation of phenanthrene on soil surfaces in the presence of nanometer anatase TiO2 under UV-light. Journal of Environmental Sciences (China)201224(12): 2122–2126

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (293KB)

Supplementary files

FCE-17005-OF-YY_suppl_1

2806

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/