Merits and limitations of TiO2-based photocatalytic pretreatment of soils impacted by crude oil for expediting bioremediation

Yu Yang, Hassan Javed, Danning Zhang, Deyi Li, Roopa Kamath, Kevin McVey, Kanwartej Sra, Pedro J.J. Alvarez

PDF(293 KB)
PDF(293 KB)
Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 387-394. DOI: 10.1007/s11705-017-1657-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Merits and limitations of TiO2-based photocatalytic pretreatment of soils impacted by crude oil for expediting bioremediation

Author information +
History +

Abstract

Heavy hydrocarbons (HHCs) in soils impacted by crude oil spills are generally recalcitrant to biodegradation due to their low bioavailability and complex chemical structure. In this study, soils were pretreated with varying concentrations of ultraviolet radiation A (UVA) or ultraviolet radiation C (UVC) activated titanium dioxide (TiO2) (1%–5%) under varying moisture conditions (0%–300% water holding capacity (WHC)) to enhance biodegradation of HCCs and shorten remediation timeframes. We demonstrate that pretreatment of impacted soils with UVC-activated TiO2 in soil slurries could enhance bioremediation of HHCs.  Total petroleum hydrocarbon (TPH) removal after 24 h exposure to UVC (254 nm and 4.8 mW/cm2) was (19.1±1.6)% in slurries with 300% WHC and 5 wt-% TiO2. TPH removal was non-selective in the C15-C36 range and increased with moisture content and TiO2 concentration. In a 10-d bioremediation test, TPH removal in treated soil increased to (26.0±0.9)%, compared to (15.4±0.8)% for controls without photocatalytic pre-treatment. Enhanced biodegradation was also confirmed by respirometry. This suggests that addition of UVC-activated TiO2 to soil slurries can transform recalcitrant hydrocarbons into more bioavailable and biodegradable byproducts and increase the rate of subsequent biodegradation. However, similar results were not observed for soils pretreated with UVA activated TiO2. This suggests that activation of TiO2 by sunlight and direct addition of TiO2 to unsaturated soils within landfarming setting may not be a feasible approach. Nevertheless, less than 1% of UVA (7.5 mW/cm2) or UVC (1.4 mW/cm2) penetrated beyond 0.3 cm soil depth, indicating that limited light penetration through soil would hinder the ability of TiO2 to enhance soil bioremediation under land farming conditions.

Graphical abstract

Keywords

TiO2 pretreatment / bioremediation / total petroleum hydrocarbons / ultraviolet

Cite this article

Download citation ▾
Yu Yang, Hassan Javed, Danning Zhang, Deyi Li, Roopa Kamath, Kevin McVey, Kanwartej Sra, Pedro J.J. Alvarez. Merits and limitations of TiO2-based photocatalytic pretreatment of soils impacted by crude oil for expediting bioremediation. Front. Chem. Sci. Eng., 2017, 11(3): 387‒394 https://doi.org/10.1007/s11705-017-1657-8

References

[1]
Fingas M. Oil Spill Science and Technology. Houston: Gulf Professional Publishing, 2010, 7–48
[2]
Kuyukina M S, Ivshina  I B, Ritchkova  M I, Philp  J C, Cunningham  C J, Christofi  N. Bioremediation of crude oil-contaminated soil using slurry-phase biological treatment and land farming techniques. Soil & Sediment Contamination, 2003, 12(1): 85–99
CrossRef Google scholar
[3]
Robles-Gonzalez I V ,  Fava F, Poggi-Varaldo  H M. A review on slurry bioreactors for bioremediation of soils and sediments. Microbial Cell Factories, 2008, 7(1): 5
CrossRef Google scholar
[4]
Tomei M C, Daugulis  A J. Ex situ bioremediation of contaminated soils: An overview of conventional and innovative technologies. Critical Reviews in Environmental Science and Technology, 2013, 43(20): 2107–2139
CrossRef Google scholar
[5]
Brame J A, Hong  S W, Lee  J, Lee S H ,  Alvarez P J J . Photocatalytic pre-treatment with food-grade TiO2 increases the bioavailability and bioremediation potential of weathered oil from the Deepwater Horizon oil spill in the Gulf of Mexico. Chemosphere, 2013, 90(8): 2315–2319
CrossRef Google scholar
[6]
Hossaini H, Moussavi  G, Farrokhi M . The investigation of the LED-activated FeFNS-TiO2 nanocatalyst for photocatalytic degradation and mineralization of organophosphate pesticides in water. Water Research, 2014, 59: 130–144
CrossRef Google scholar
[7]
Varner K E, Rindfusz  K, Gaglione A E V . Nano titanium dioxide environmental matters: State of the science literature review. U.S. Environmental Protection Agency, 2010: EPA/600/R–10/089
[8]
Fagan R, Mccormack  D E, Dionysiou  D D, Pillai  S C. A review of solar and visible light active TiO2 photocatalysis for treating bacteria, cyanotoxins and contaminants of emerging concern. Materials Science in Semiconductor Processing, 2016, 42: 2–14
CrossRef Google scholar
[9]
Uddin M T, Babot  O, Thomas L ,  Olivier C ,  Redaelli M ,  D’arienzo M ,  Morazzoni F ,  Jaegermann W ,  Rockstroh N ,  Junge H ,  Toupance T . New insights into the photocatalytic properties of RuO2/TiO2 mesoporous heterostructures for hydrogen production and organic pollutant photodecomposition. Journal of Physical Chemistry C, 2015, 119(13): 7006–7015
CrossRef Google scholar
[10]
Daghrir R, Drogui  P, Robert D . Modified TiO2 for environmental photocatalytic applications: A review. Industrial & Engineering Chemistry Research, 2013, 52(10): 3581–3599
CrossRef Google scholar
[11]
Keen O S, Baik  S, Linden K G ,  Aga D S ,  Love N G . Enhanced biodegradation of carbamazepine after UV/H2O2 advanced oxidation. Environmental Science & Technology, 2012, 46(11): 6222–6227
CrossRef Google scholar
[12]
Lee J, Hong  S, Mackeyev Y ,  Lee C, Chung  E, Wilson L J ,  Kim J H ,  Alvarez P J J . Photosensitized oxidation of emerging organic pollutants by Tetrakis C-60 aminofullerene-derivatized silica under visible light I\irradiation. Environmental Science & Technology, 2011, 45(24): 10598–10604
CrossRef Google scholar
[13]
Turchi C S, Ollis  D F. Photocatalytic degradation of organic-water contaminants—mechanisms involving hydroxyl radical attack. Journal of Catalysis, 1990, 122(1): 178–192
CrossRef Google scholar
[14]
Li G Z, Park  S, Rittmann B E . Degradation of reactive dyes in a photocatalytic circulating-bed biofilm reactor. Biotechnology and Bioengineering, 2012, 109(4): 884–893
CrossRef Google scholar
[15]
D’auria M, Emanuele  L, Racioppi R ,  Velluzzi V . Photochemical degradation of crude oil: Comparison between direct irradiation, photocatalysis, and photocatalysis on zeolite. Journal of Hazardous Materials, 2009, 164(1): 32–38
CrossRef Google scholar
[16]
Marsolek M D, Torres  C I, Hausner  M, Rittmann B E . Intimate coupling of photocatalysis and biodegradation in a photocatalytic circulating-bed biofilm reactor. Biotechnology and Bioengineering, 2008, 101(1): 83–92
CrossRef Google scholar
[17]
Park H, Choi  W. Photocatalytic conversion of benzene to phenol using modified TiO2 and polyoxometalates. Catalysis Today, 2005, 101(3-4): 291–297
CrossRef Google scholar
[18]
Al-Bastaki N M . Performance of advanced methods for treatment of wastewater: UV/TiO2, RO and UF. Chemical Engineering and Processing, 2004, 43(7): 935–940
CrossRef Google scholar
[19]
IARC. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans: Solar and Ultraviolet Radiation. Lyon: 1992, 43–60
[20]
Li P G, Yue  P L. Comparison of the effectiveness of photon-based oxidation processes in a pilot falling film photoreactor. Environmental Science & Technology, 1999, 33(18): 3210–3216
CrossRef Google scholar
[21]
Li M. Combined effects of sunlight and titanium dioxide nanoparticles on dietary antioxidants and food colors. Dissertation for Doctoral Degree.  College Park : University of Maryland, 2014, 1–24
[22]
Magpantay G M . Photocatalytic oxidation of ethanol using macroporous titania. Dissertation for Master Degree. Baton Rouge: Louisiana State University, 2008, 36–56
[23]
Unosson E, Welch  K, Persson C ,  Engqvist H . Stability and prospect of UV/H2O2 activated titania films for biomedical use. Applied Surface Science, 2013, 285: 317–323
CrossRef Google scholar
[24]
Chen T, Delgado  A G, Yavuz  B M, Proctor  A J, Maldonado  J, Zuo Y ,  Westerhoff P ,  Krajamalhik-Brown R ,  Rittmann B E . Ozone enhances biodegradability of heavy hydrocarbons in soil. Journal of Environmental Engineering and Science, 2016, 11(1): 7–17
CrossRef Google scholar
[25]
Plata D L, Sharpless  C M, Reddy  C M. Photochemical degradation of polycyclic aromatic hydrocarbons in oil films. Environmental Science & Technology, 2008, 42(7): 2432–2438
CrossRef Google scholar
[26]
Ge Y G, Schimel  J P, Holden  P A. Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environmental Science & Technology, 2011, 45(4): 1659–1664
CrossRef Google scholar
[27]
Seeger E, Baun  A, Kastner M ,  Trapp S . Insignificant acute toxicity of TiO2 nanoparticles to willow trees. Journal of Soils and Sediments, 2009, 9(1): 46–53
CrossRef Google scholar
[28]
Khare P, Sonane  M, Pandey R ,  Ali S, Gupta  K C, Satish  A. Adverse effects of TiO2 and ZnO nanoparticles in soil nematode, Caenorhabditis elegans. Journal of Biomedical Nanotechnology, 2011, 7(1): 116–117
CrossRef Google scholar
[29]
Kibanova D, Cervini-Silva  J, Destaillats H . Efficiency of clay-TiO2 nanocomposites on the photocatalytic elimination of a model hydrophobic air pollutant. Environmental Science & Technology, 2009, 43(5): 1500–1506
CrossRef Google scholar
[30]
Zhang L H, Li  P J, Gong  Z Q, Li  X M. Photocatalytic degradation of polycyclic aromatic hydrocarbons on soil surfaces using TiO2 under UV light. Journal of Hazardous Materials, 2008, 158(2-3): 478–484
CrossRef Google scholar
[31]
Zertal A, Sehili  T, Boule P . Photochemical behaviour of 4-chloro-2-methylphenoxyacetic acid—influence of pH and irradiation wavelength. Journal of Photochemistry and Photobiology a-Chemistry, 2001, 146(1-2): 37–48
[32]
Fujishima A, Rao  T N, Tryk  D A. Titanium dioxide photocatalysis. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 2000, 1(1): 1–21
CrossRef Google scholar
[33]
Umebayashi T, Yamaki  T, Itoh H ,  Asai K. Analysis of electronic structures of 3D transition metal-doped TiO2 based on band calculations. Journal of Physics and Chemistry of Solids, 2002, 63(10): 1909–1920
CrossRef Google scholar
[34]
Bae E Y, Choi  W Y, Park  J W, Shin  H S, Kim  S B, Lee  J S. Effects of surface anchoring groups (Carboxylate vs. phosphonate) in ruthenium-complex-sensitized TiO2 on visible light reactivity in aqueous suspensions. Journal of Physical Chemistry B, 2004, 108(37): 14093–14101
CrossRef Google scholar
[35]
Park H S, Jung  I M, Choi  G H, Hahn  S, Yoo Y S ,  Lee T. Modification of a rodent Hindlimb model of secondary Lymphedema: Surgical radicality vs. radiotherapeutic ablation. Biomed Research International, 2013, 2013: 208912
[36]
Higarashi M M ,  Jardim W E . Remediation of pesticide contaminated soil using TiO2 mediated by solar light. Catalysis Today, 2002, 76(2-4): 201–207
CrossRef Google scholar
[37]
Gu J L, Dong  D B, Kong  L X, Zheng  Y, Li X J . Photocatalytic degradation of phenanthrene on soil surfaces in the presence of nanometer anatase TiO2 under UV-light. Journal of Environmental Sciences (China), 2012, 24(12): 2122–2126
CrossRef Google scholar

Acknowledgments

This work was supported by Chevron Energy Technology Company. We really appreciate the help from Dr. Rosa Krajmalnik-Brown and Dr. Anca G. Delgado at Arizona State University. Any results, conclusions, and recommendations expressed in this research are those of the authors, and do not necessarily reflect the views of Chevron.

Electronic Supplementary Material

Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11705-017-1657-8 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(293 KB)

Accesses

Citations

Detail

Sections
Recommended

/