Hydro-pyrolysis of lignocellulosic biomass over alumina supported Platinum, Mo2C and WC catalysts

Songbo He , Jeffrey Boom , Rolf van der Gaast , K. Seshan

Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 155 -161.

PDF (331KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 155 -161. DOI: 10.1007/s11705-017-1655-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Hydro-pyrolysis of lignocellulosic biomass over alumina supported Platinum, Mo2C and WC catalysts

Author information +
History +
PDF (331KB)

Abstract

In-line hydro-treatment of bio-oil vapor from fast pyrolysis of lignocellulosic biomass (hydro-pyrolysis of biomass) is studied as a method of upgrading the liquefied bio-oil for a possible precursor to green fuels. The nobel metal (Pt) and non-noble metal catalysts (Mo2C and WC) were compared at 500 °C and atmospheric pressure which are same as the reaction conditions for fast pyrolysis of biomass. Results indicated that under the pyrolysis conditions, the major components, such as acids and carbonyls, of the fast pyrolysis bio-oil can be completely and partially hydrogenated to form hydrocarbons, an ideal fossil fuel blend, in the hydro-treated bio-oil. The carbide catalysts perform equally well as the Pt catalyst regarding to the aliphatic and aromatic hydrocarbon formation (ca. 60%), showing the feasibility of using the cheap non-noble catalysts for hydro-pyrolysis of biomass.

Graphical abstract

Keywords

bio-oil / pyrolysis / hydro-deoxygenation (HDO) / non-noble metal catalysts / hydro-treatment

Cite this article

Download citation ▾
Songbo He, Jeffrey Boom, Rolf van der Gaast, K. Seshan. Hydro-pyrolysis of lignocellulosic biomass over alumina supported Platinum, Mo2C and WC catalysts. Front. Chem. Sci. Eng., 2018, 12(1): 155-161 DOI:10.1007/s11705-017-1655-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Venderbosch R H. A critical view on catalytic pyrolysis of biomass. ChemSusChem20158(8): 1306–1316

[2]

Nguyen T SZabeti MLefferts LBrem GSeshan K. Conversion of lignocellulosic biomass to green fuel oil over sodium based catalysts. Bioresource Technology2013142: 353–360

[3]

Zabeti M. Renewable Fuels via Catalytic Pyrolysis of Lignocellulose. Enschede: University of Twente Press2014, 18–29

[4]

Liu CWang HKarim ASun JWang Y. Catalytic fast pyrolysis of lignocellulosic biomass. Chemical Society Reviews201443(22): 7594–7623

[5]

Linck MFelix LMarker TRoberts M. Integrated biomass hydropyrolysis and hydrotreating: A brief review. WIREs Energy and Environment20143(6): 575–581

[6]

Ruddy D ASchaidle J AFerrell J R III, Wang J, Moens L, Hensley J E. Recent advances in heterogeneous catalysts for bio-oil upgrading via “ex situ catalytic fast pyrolysis”: Catalyst development through the study of model compounds. Green Chemistry201416(2): 454–490

[7]

Zacher A HOlarte M VSantosa D MElliott D CJones S B. A review and perspective of recent bio-oil hydrotreating research. Green Chemistry201416(2): 491–515

[8]

Oyama S T. Novel catalysts for advanced hydroprocessing: Transition metal phosphides. Journal of Catalysis2003216(1-2): 343–352

[9]

Levy R BBoudart M. Platinum-like behavior of tungsten carbide in surface catalysis. Science1973181(4099): 547–549

[10]

Oyama S T. Preparation and catalytic properties of transition metal carbides and nitrides. Catalysis Today199215(2): 179–200

[11]

Ramanathan SOyama S T. New catalysts for hydroprocessing: Transition metal carbides and nitrides. Journal of Physical Chemistry199599(44): 16365–16372

[12]

Szymańska-Kolasa ALewandowski MSayag CDjéga-Mariadassou G. Comparison of molybdenum carbide and tungsten carbide for the hydrodesulfurization of dibenzothiophene. Catalysis Today2007119(1-4): 7–12

[13]

Szymańska-Kolasa ALewandowski MSayag CBrodzki DDjéga-Mariadassou G. Comparison between tungsten carbide and molybdenum carbide for the hydrodenitrogenation of carbazole. Catalysis Today2007207(119): 35–38

[14]

Ren HChen YHuang YDeng WVlachos D GChen J G. Tungsten carbides as selective deoxygenation catalysts: Experimental and computational studies of converting C3 oxygenates to propene. Green Chemistry201416(2): 761–769

[15]

Stellwagen D RBitter J H. Structure-performance relations of molybdenum- and tungsten carbide catalysts for deoxygenation. Green Chemistry201517(1): 582–593

[16]

Hollak S A WGosselink R WVan Es D SBitter J H. Comparison of tungsten and molybdenum carbide catalysts for the hydrodeoxygenation of oleic acid. ACS Catalysis20133(12): 2837–2844

[17]

Michalsky RZhang Y JMedford A JPeterson A A. Departures from the adsorption energy scaling relations for metal carbide catalysts. Journal of Physical Chemistry C2014118(24): 13026–13034

[18]

Xiong KLee W SBhan AChen J G. Molybdenum carbide as a highly selective deoxygenation catalyst for converting furfural to 2-methylfuran. ChemSusChem20147(8): 2146–2149

[19]

Xiong KYu WChen J G. Selective deoxygenation of aldehydes and alcohols on molybdenum carbide (Mo2C) surfaces. Applied Surface Science2014323: 88–95

[20]

McManus J RVohs J M. Deoxygenation of glycolaldehyde and furfural on Mo2C/Mo(100). Surface Science2014630: 16–21

[21]

Mamède A SGiraudon J MLöfberg ALeclercq LLeclercq G. Hydrogenation of toluene over β-Mo2C in the presence of thiophene. Applied Catalysis A, General2002227(1-2): 73–82

[22]

Nagai MKurakami TOmi S. Activity of carbided molybdena-alumina for CO2 hydrogenation. Catalysis Today199845(1-4): 235–239

[23]

Boullosa-Eiras SLødeng RBergem HStöcker MHannevold LBlekkan E A. Catalytic hydrodeoxygenation (HDO) of phenol over supported molybdenum carbide, nitride, phosphide and oxide catalysts. Catalysis Today2014223: 44–53

[24]

He LQin YLou HChen P. High dispersed molybdenum carbide nanoparticles supported on activated carbon as an efficient catalyst for the hydrodeoxygenation of vanillin. RSC Advances20155(54): 43141–43147

[25]

Grilc MVeryasov GLikozar BJesih ALevec J. Hydrodeoxygenation of solvolysed lignocellulosic biomass by unsupported MoS2, MoO2, Mo2C and WS2 catalysts. Applied Catalysis B: Environmental201563: 467–477

[26]

Imran ABramer E ASeshan KBrem G. High quality bio-oil from catalytic flash pyrolysis of lignocellulosic biomass over alumina-supported sodium carbonate. Fuel Processing Technology2014127: 72–79

[27]

Tyrone G ISepúlveda CGarcia RGarcía Fierro J LEscalona NDeSisto W J. Comparison of alumina- and SBA-15-supported molybdenum nitride catalysts for hydrodeoxygenation of guaiacol. Applied Catalysis A, General2012435-436: 51–60

[28]

Arun NSharma R VDalai A K. Green diesel synthesis by hydrodeoxygenation of bio-based feedstocks: Strategies for catalyst design and development. Renewable & Sustainable Energy Reviews201548: 240–255

[29]

Zhou LLawal A. Hydrodeoxygenation of microalgae oil to green diesel over Pt, Rh and presulfided NiMo catalysts. Catalysis Science & Technology20166(5): 1442–1454

[30]

Zhou LLawal A. Evaluation of presulfided NiMo/gamma-Al2O3 for hydrodeoxygenation of microalgae oil to produce green diesel. Energy & Fuels201529(1): 262–272

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (331KB)

2445

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/