Chitosan/polyethylene glycol impregnated activated carbons: Synthesis, characterization and adsorption performance

Ehsan Salehi , Fereshteh Soroush , Maryam Momeni , Aboulfazl Barati , Ali Khakpour

Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 575 -585.

PDF (480KB)
Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 575 -585. DOI: 10.1007/s11705-017-1650-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Chitosan/polyethylene glycol impregnated activated carbons: Synthesis, characterization and adsorption performance

Author information +
History +
PDF (480KB)

Abstract

Novel modified activated carbons (ACs) with enhanced adsorptive properties were obtained coating by chitosan (CS), polyethylene glycol (PEG) and blends of the two polymers (0:1, 1:0, 1:1, 1:2 and 2:1 wt/wt) on ACs by an impregnation technique. The adsorption performances of the pristine, acidified and polymer-impregnated ACs were studied using methylene blue as a model adsorbate. The adsorbents were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy and abrasion hardness tests. The average coating thicknesses were between 10 to 23 microns. The pore sizes, pore densities and pore capacities of the activated carbons increased as the wt-% PEG in the coating increased. The highest adsorption capacity (424.7 mg/g) was obtained for the chitosan-coated ACs and this adsorption was well described by the Langmuir isotherm model. The kinetic results were best described by the pseudo-second-order kinetic model. The highest rate constant was obtained with the ACs modified with the CS:PEG (2:1) coating and this result was almost 2.6 times greater than that of the unmodified ACs. The CS/PEG impregnated ACs also displayed superior hardness (~90%), compared to unmodified ACs (~85%). Overall the chitosan had a greater effect on improving adsorption capacity whereas the polyethylene glycol enhanced the adsorption rate.

Graphical abstract

Keywords

carbon biocomposites / impregnation / chitosan / polyethylene glycol / image processing

Cite this article

Download citation ▾
Ehsan Salehi, Fereshteh Soroush, Maryam Momeni, Aboulfazl Barati, Ali Khakpour. Chitosan/polyethylene glycol impregnated activated carbons: Synthesis, characterization and adsorption performance. Front. Chem. Sci. Eng., 2017, 11(4): 575-585 DOI:10.1007/s11705-017-1650-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Auta MHameed B H. Preparation of waste tea activated carbon using potassium acetate as an activating agent for adsorption of acid blue 25 dye. Chemical Engineering Journal2011171(2): 502–509

[2]

Tunc OTanac HAksu Z. Potential use of cotton plant wastes for the removal of remazol black B reactive dye. Journal of Hazardous Materials2009163(1): 187–198

[3]

Foo K YHameed B H. Preparation, characterization and evaluation of adsorptive properties of orange peel based activated carbon via microwave induced K2CO3 activation. Bioresource Technology2012104: 679–686

[4]

Seshardi SBishop P LAga A M. Anaerobic/aerobic treatment of selected azo dyes in waste water. Waste Management (New York, N.Y.)199414(2): 127–137

[5]

Pearce C ILloyd J RGuthrie J T. The removal of colour from textile waste water using whole bacterial cells: A review. Dyes and Pigments200358(3): 179–196

[6]

Kuo W SHo P H. Solar photocatalytic decolorization of methylene blue in water. Chemosphere200145(1): 77–83

[7]

Ciardelli GRanieri N. The treatment and reuse of wastewater in the textile industry by means of ozonation and electoflocculation. Water Research200135(2): 567–572

[8]

Tang W ZHuren An. Huren A. UV/TiO2 photocatalytic oxidation of commercial dyes in aqueous solutions. Chemosphere199531(9): 4157–4170

[9]

Gupta V K, Suhas. Application of low-cost adsorbents for dye removal: A review. Journal of Environmental Management200990(8): 2313–2342

[10]

Salleh M A MMahmoud D KKarim W AIdris A. Cationic and anionic dye adsorption by agricultural solid wastes: A comprehensive review. Desalination2011280(1-3): 1–13

[11]

Kalderis DBethanis SParaskeva PDiamadopoulos E. Production of activated carbon from bagasse and rice husk by a single-stage chemical activation method at low retention times. Bioresource Technology200899(15): 6809–6816

[12]

Lua A CYang T. Characteristics of activated carbon prepared from pistachionut shell by zinc chloride activation under nitrogen and vacuum conditions. Journal of Colloid and Interface Science2005290(2): 505–513

[13]

Olivares-Marin MFernandez-Gonzalez CMacias-Garcia AGomez-Serrano V. Porous structure of activated carbon prepared from cherry stones by chemical activation with phosphoric acid. Energy & Fuels200721(5): 2942–2949

[14]

Bagheri NAbedi J. Preparation of high surface area activated carbon from corn by chemical activation using potassium hydroxide. Chemical Engineering Research & Design200987(8): 1059–1064

[15]

Yang JQiu K. Preparation of activated carbons from walnut shells via vacuum chemical. Chemical Engineering Journal2010165(1): 209–217

[16]

Bhatnagar AHogland WMarques MSillanpaac M. An overview of the modification methods of activated carbon for its water treatment applications. Chemical Engineering Journal2013219: 499–511

[17]

Ravi Kumar M N V. A review of chitin and chitosan applications. Reactive & Functional Polymers200046(1): 1–27

[18]

Rinaudo M. Chitin and chitosan, properties and applications. Progress in Polymer Science200631(7): 603–632

[19]

Tan I A WAhmad A LHameed B H. Enhancement of basic dye adsorption uptake from aqueous solutions using chemically modified oil palm shell activated carbon. Colloids and Surfaces. A, Physicochemical and Engineering Aspects2008318(1-3): 88–96

[20]

Pillai C K SPaul WSharma C H P. Chitin and chitosan polymers: Chemistry, solubility and fiber formation. Progress in Polymer Science200934(7): 641–678

[21]

Crini GBadot P M. Application of chitosan, a natural amino polysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: A review of recent literature. Progress in Polymer Science200833(4): 399–447

[22]

Chandy TMooradian D LRao G H R. Chitosan/polyethylene glycol-alginate microcapsules for oral delivery of hirudin. Journal of Applied Polymer Science199870(11): 2143–2153

[23]

Salehi EMadaeni S SRajabi LDerakhshan A ADaraei SVatanpour V. Static and dynamic adsorption of copper ions on chitosan/polyvinyl alcohol thin adsorptive membranes: Combined effect of polyethylene glycol and aminated multi-walled carbon nanotubes. Chemical Engineering Journal2013215-216: 791–801

[24]

Swayampakulaa KBoddub V MNadavala S KAbburi K. Competitive adsorption of Cu(II), Co(II) and Ni(II) from their binary and tertiary aqueous solutions using chitosan coated perlite beads as biosorbent. Journal of Hazardous Materials2009170(2-3): 680–689

[25]

Hydari SSharififard HNabavinia MParvizi M R. A comparative investigation on removal performances of commercial activated carbon, chitosan biosorbent and chitosan/activated carbon composite for cadmium. Chemical Engineering Journal2012193-194: 276–282

[26]

Edwin Vasu A. Surface modification of activated carbon for enhancement of nickel(P) adsorption. Journal of Chemistry20085(4): 814–819

[27]

Xie LSparks M ALi WQi YLiu ChThomas M CJohnson G A. Quantitative susceptibility mapping of kidney inflammation and fibrosis in type 1 angiotensin receptor-deficient mice. NMR in Biomedicine201326(12): 1853–1863

[28]

Alcantar N AAydil E SIsraelachvil J N. Polyethylene glycol-coated biocompatible surfaces. Journal of Biomedical Materials Research200051(3): 343–351

[29]

Sheth S RLeckband D. Measurements of attractive forces between protiens end-grafted poly ethylene glycol chains. Proceedings of the National Academy of Sciences of the United States of America199794(16): 8399–8404

[30]

Shashikala MNagapadma MPinto LNambiar S N. Studies on the removal of methylene blue dye from water using chitosan. International Journal of Development Research20133(8): 40–44

[31]

Minfeng ZZhenngping F. Preparation of sub-micrometer porous membrane from chitosan/polyethylene glycol semi-IPN. Journal of Membrane Science2004245(1-2): 95–102

[32]

Huang MLiu LZhang GYuan GFang Y. Preparation of chitosan derivative with polyethylene glycol side chains for porous structure without specific processing technique. International Journal of Biological Macromolecules200638(3-5): 191–196

[33]

Liu Q SZheng TLi NWang PAbulikemu G. Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue. Applied Surface Science2010256(10): 3309–3315

[34]

Hameed B HAhmad A LLatiff K N A. Adsorption of basic dye (methylene blue) onto activated carbon prepared from rattan sawdust. Dyes and Pigments200775(1): 143–149

[35]

Chandra T CMirna M MSudaryanto YIsmadji S. Adsorption of basic dye onto activated carbon prepared from durian shell: Studies of adsorption equilibrium and kinetics. Chemical Engineering Journal2007127(1-3): 121–129

[36]

Bulut YAydin H. A kinetics and thermodynamics study of methylene blue adsorption on wheat shells. Desalination2006194(1-3): 259–267

[37]

Ruthven D W. Principles of Adsorption and Adsorption Processes. Jon Wiley & Sons1984, 145–198

[38]

Tan T WHe X JDu W X. Adsorption behavior of metal ions on imprinted chitosan adsorbent. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire)200176(2): 191–195

[39]

Taty Costodes V CFauduet HPorte CHoa Y S H. Removal of lead (II) ions from synthetic and real effluents using immobilized pinus sylvestris sawdust: Adsorption on a fixed-bed column. Journal of Hazardous Materials2005123(1-3): 135–144

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (480KB)

2254

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/