New approaches to water purification for resource-constrained settings: Production of activated biochar by chemical activation with diammonium hydrogenphosphate

Mohit Nahata, Chang Y. Seo, Pradeep Krishnakumar, Johannes Schwank

PDF(670 KB)
PDF(670 KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 194-208. DOI: 10.1007/s11705-017-1647-x
RESEARCH ARTICLE
RESEARCH ARTICLE

New approaches to water purification for resource-constrained settings: Production of activated biochar by chemical activation with diammonium hydrogenphosphate

Author information +
History +

Abstract

A significant portion of the world’s population does not have access to safe drinking water. This problem is most acute in remote, resource-constrained rural settings in developing countries. Water filtration using activated carbon is one of the important steps in treating contaminated water. Lignocellulosic biomass is generally available in abundance in such locations, such as the African rain forests. Our work is focused on developing a simple method to synthesize activated biochar from locally available materials. The preparation of activated biochar with diammonium hydrogenphosphate (DAP) as the activating agent is explored under N2 flow and air. The study, carried out with cellulose as a model biomass, provides some insight into the interaction between DAP and biomass, as well as the char forming mechanism. Various characterization techniques such as N2 physisorption, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and Raman spectroscopy are utilized to compare the properties between biochar formed under nitrogen and partial oxidative conditions. At a temperature of 450 °C, the loading of DAP over cellulose is systematically varied, and its effect on activation is examined. The activated biochar samples are predominantly microporous in the range of concentrations studied. The interaction of DAP with cellulose is investigated and the nature of bonding of the heteroatoms to the carbonaceous matrix is elucidated. The results indicate that the quality of biochar prepared under partial oxidation condition is comparable to that of biochar prepared under nitrogen, leading to the possibility of an activated biochar production scheme on a small scale in resource-constrained settings.

Graphical abstract

Keywords

cellulose / DAP / activation / heteroatom / microporous

Cite this article

Download citation ▾
Mohit Nahata, Chang Y. Seo, Pradeep Krishnakumar, Johannes Schwank. New approaches to water purification for resource-constrained settings: Production of activated biochar by chemical activation with diammonium hydrogenphosphate. Front. Chem. Sci. Eng., 2018, 12(1): 194‒208 https://doi.org/10.1007/s11705-017-1647-x

References

[1]
Collard F X, Blin J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable & Sustainable Energy Reviews, 2014, 38: 594–608
CrossRef Google scholar
[2]
Antal M J, Grønli M. The art, science, and technology of charcoal production. Industrial & Engineering Chemistry Research, 2003, 42(8): 1619–1640
CrossRef Google scholar
[3]
Downie A E, Van Zwieten L, Smernik R J, Morris S, Munroe P R. Terra Preta Australis: Reassessing the carbon storage capacity of temperate soils. Agriculture, Ecosystems & Environment, 2011, 140(1): 137–147
CrossRef Google scholar
[4]
Huggins T M, Haeger A, Biffinger J C, Ren Z J. Granular biochar compared with activated carbon for wastewater treatment and resource recovery. Water Research, 2016, 94: 225–232
CrossRef Google scholar
[5]
Rodríguez-Reinoso F, Molina-Sabio M, González M T. The use of steam and CO2 as activating agents in the preparation of activated carbons. Carbon, 1995, 33(1): 15–23
CrossRef Google scholar
[6]
Caturla F, Molina-Sabio M, Rodríguez-Reinoso F. Preparation of activated carbon by chemical activation with ZnCl2. Carbon, 1991, 29(7): 999–1007
CrossRef Google scholar
[7]
Molina-Sabio M, Almansa C, Rodríguez-Reinoso F. Phosphoric acid activated carbon discs for methane adsorption. Carbon, 2003, 41(11): 2113–2119
CrossRef Google scholar
[8]
Yoon S H, Lim S, Song Y, Ota Y, Qiao W, Tanaka A, Mochida I. KOH activation of carbon nanofibers. Carbon, 2004, 42(8): 1723–1729
CrossRef Google scholar
[9]
Jagtoyen M, Derbyshire F. Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon, 1998, 36(7): 1085–1097
CrossRef Google scholar
[10]
Molina-Sabio M, Rodríguez-Reinoso F, Caturla F, Sellés M J. Porosity in granular carbons activated with phosphoric acid. Carbon, 1995, 33(8): 1105–1113
CrossRef Google scholar
[11]
Fitzer E, Geigl K H, Hüttner W, Weiss R. Chemical interactions between the carbon fibre surface and epoxy resins. Carbon, 1980, 18(6): 389–393
CrossRef Google scholar
[12]
Puziy A, Poddubnaya O, Martínez-Alonso A, Suárez-García F, Tascón J M. Synthetic carbons activated with phosphoric acid: I. Surface chemistry and ion binding properties. Carbon, 2002, 40(9): 1493–1505
CrossRef Google scholar
[13]
Hu B, Wang K, Wu L, Yu S H, Antonietti M, Titirici M M. Engineering carbon materials from the hydrothermal carbonization process of biomass. Advanced Materials, 2010, 22(7): 813–828
CrossRef Google scholar
[14]
Hu B, Yu S H, Wang K, Liu L, Xu X W. Functional carbonaceous materials from hydrothermal carbonization of biomass: An effective chemical process. Dalton Transactions (Cambridge, England), 2008, 40(40): 5414–5423
CrossRef Google scholar
[15]
Benaddi H, Bandosz T, Jagiello J, Schwarz J, Rouzaud J, Legras D, Béguin F. Surface functionality and porosity of activated carbons obtained from chemical activation of wood. Carbon, 2000, 38(5): 669–674
CrossRef Google scholar
[16]
Mohan D, Pittman Charles U, Steele P H. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels, 2006, 20(3): 848–889
CrossRef Google scholar
[17]
Di Blasi C, Branca C, Galgano A. Effects of diammonium phosphate on the yields and composition of products from wood pyrolysis. Industrial & Engineering Chemistry Research, 2007, 46(2): 430–438
CrossRef Google scholar
[18]
Ilharco L M, Garcia A R, Lopes da Silva J, Vieira Ferreira L F. Infrared approach to the study of adsorption on cellulose: Influence of cellulose crystallinity on the adsorption of benzophenone. Langmuir, 1997, 13(15): 4126–4132
CrossRef Google scholar
[19]
Bouchard J, Abatzoglou N, Chornet E, Overend R P. Characterization of depolymerized cellulosic residues. Wood Science and Technology, 1989, 23(4): 343–355
CrossRef Google scholar
[20]
Branca C, Di B C. Oxidation characteristics of chars generated from wood impregnated with (NH4)2HPO4 and (NH4)2SO4. Thermochimica Acta, 2007, 456(2): 120–127
CrossRef Google scholar
[21]
Sing K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry, 1985, 57(4): 603–619
CrossRef Google scholar
[22]
Molina-Sabio M, Rodríguez-Reinoso F. Role of chemical activation in  the  development  of  carbon  porosity. Colloids  and  Surfaces. A,  Physicochemical  and  Engineering Aspects,  2004,  241(1):  15–25
CrossRef Google scholar
[23]
Oshida K, Kogiso K, Matsubayashi K, Takeuchi K, Kobayashi S, Endo M, Dresselhaus M S, Dresselhaus G. Analysis of pore structure of activated carbon fibers using high resolution transmission electron microscopy and image processing. Journal of Materials Research, 1995, 10(10): 2507–2517
CrossRef Google scholar
[24]
Puziy A M, Poddubnaya O I, Socha R P, Gurgul J, Wisniewski M. XPS and NMR studies of phosphoric acid activated carbons. Carbon, 2008, 46(15): 2113–2123
CrossRef Google scholar
[25]
Kannan A G, Choudhury N R, Dutta N K. Synthesis and characterization of methacrylate phospho-silicate hybrid for thin film applications. Polymer, 2007, 48(24): 7078–7086
CrossRef Google scholar
[26]
Pels J R, Kapteijn F, Moulijn J A, Zhu Q, Thomas K M. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon, 1995, 33(11): 1641–1653
CrossRef Google scholar
[27]
Sethia G, Sayari A. Comprehensive study of ultra-microporous nitrogen-doped activated carbon for CO2 capture. Carbon, 2015, 93: 68–80
CrossRef Google scholar
[28]
Pelavin M, Hendrickson D N, Hollander J M, Jolly W L. Phosphorus 2p electron binding energies. Correlation with extended Hueckel charges. Journal of Physical Chemistry, 1970, 74(5): 1116–1121
CrossRef Google scholar
[29]
Marsh H, Rodríguez-Reinoso F. Activated carbon. Elsevier, 2006, 224–225
[30]
Zhou Y, Candelaria S L, Liu Q, Uchaker E, Cao G. Porous carbon with high capacitance and graphitization through controlled addition and removal of sulfur-containing compounds. Nano Energy, 2015, 12: 567–577
CrossRef Google scholar
[31]
Jawhari T, Roid A, Casado J. Raman spectroscopic characterization of some commercially available carbon black materials. Carbon, 1995, 33(11): 1561–1565
CrossRef Google scholar
[32]
Shimodaira N, Masui A. Raman spectroscopic investigations of activated carbon materials. Journal of Applied Physics, 2002, 92(2): 902–909
CrossRef Google scholar

Acknowledgments

Support of this work by REFRESCH, funded through the University of Michigan’s Global Challenges for the Third Century program, is gratefully acknowledged. The authors thank Dr. Galen Fisher, Dr. Xiaoyin Chen and Dr. Andrew Tadd for their valuable insights during the research.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(670 KB)

Accesses

Citations

Detail

Sections
Recommended

/