New approaches to water purification for resource-constrained settings: Production of activated biochar by chemical activation with diammonium hydrogenphosphate

Mohit Nahata , Chang Y. Seo , Pradeep Krishnakumar , Johannes Schwank

Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 194 -208.

PDF (670KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 194 -208. DOI: 10.1007/s11705-017-1647-x
RESEARCH ARTICLE
RESEARCH ARTICLE

New approaches to water purification for resource-constrained settings: Production of activated biochar by chemical activation with diammonium hydrogenphosphate

Author information +
History +
PDF (670KB)

Abstract

A significant portion of the world’s population does not have access to safe drinking water. This problem is most acute in remote, resource-constrained rural settings in developing countries. Water filtration using activated carbon is one of the important steps in treating contaminated water. Lignocellulosic biomass is generally available in abundance in such locations, such as the African rain forests. Our work is focused on developing a simple method to synthesize activated biochar from locally available materials. The preparation of activated biochar with diammonium hydrogenphosphate (DAP) as the activating agent is explored under N2 flow and air. The study, carried out with cellulose as a model biomass, provides some insight into the interaction between DAP and biomass, as well as the char forming mechanism. Various characterization techniques such as N2 physisorption, X-ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy and Raman spectroscopy are utilized to compare the properties between biochar formed under nitrogen and partial oxidative conditions. At a temperature of 450 °C, the loading of DAP over cellulose is systematically varied, and its effect on activation is examined. The activated biochar samples are predominantly microporous in the range of concentrations studied. The interaction of DAP with cellulose is investigated and the nature of bonding of the heteroatoms to the carbonaceous matrix is elucidated. The results indicate that the quality of biochar prepared under partial oxidation condition is comparable to that of biochar prepared under nitrogen, leading to the possibility of an activated biochar production scheme on a small scale in resource-constrained settings.

Graphical abstract

Keywords

cellulose / DAP / activation / heteroatom / microporous

Cite this article

Download citation ▾
Mohit Nahata, Chang Y. Seo, Pradeep Krishnakumar, Johannes Schwank. New approaches to water purification for resource-constrained settings: Production of activated biochar by chemical activation with diammonium hydrogenphosphate. Front. Chem. Sci. Eng., 2018, 12(1): 194-208 DOI:10.1007/s11705-017-1647-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Collard F XBlin J. A review on pyrolysis of biomass constituents: Mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renewable & Sustainable Energy Reviews201438: 594–608

[2]

Antal M JGrønli M. The art, science, and technology of charcoal production. Industrial & Engineering Chemistry Research200342(8): 1619–1640

[3]

Downie A EVan Zwieten LSmernik R JMorris SMunroe P R. Terra Preta Australis: Reassessing the carbon storage capacity of temperate soils. Agriculture, Ecosystems & Environment2011140(1): 137–147

[4]

Huggins T MHaeger ABiffinger J CRen Z J. Granular biochar compared with activated carbon for wastewater treatment and resource recovery. Water Research201694: 225–232

[5]

Rodríguez-Reinoso FMolina-Sabio MGonzález M T. The use of steam and CO2 as activating agents in the preparation of activated carbons. Carbon199533(1): 15–23

[6]

Caturla FMolina-Sabio MRodríguez-Reinoso F. Preparation of activated carbon by chemical activation with ZnCl2. Carbon199129(7): 999–1007

[7]

Molina-Sabio MAlmansa CRodríguez-Reinoso F. Phosphoric acid activated carbon discs for methane adsorption. Carbon200341(11): 2113–2119

[8]

Yoon S HLim SSong YOta YQiao WTanaka AMochida I. KOH activation of carbon nanofibers. Carbon200442(8): 1723–1729

[9]

Jagtoyen MDerbyshire F. Activated carbons from yellow poplar and white oak by H3PO4 activation. Carbon199836(7): 1085–1097

[10]

Molina-Sabio MRodríguez-Reinoso FCaturla FSellés M J. Porosity in granular carbons activated with phosphoric acid. Carbon199533(8): 1105–1113

[11]

Fitzer EGeigl K HHüttner WWeiss R. Chemical interactions between the carbon fibre surface and epoxy resins. Carbon198018(6): 389–393

[12]

Puziy APoddubnaya OMartínez-Alonso ASuárez-García FTascón J M. Synthetic carbons activated with phosphoric acid: I. Surface chemistry and ion binding properties. Carbon200240(9): 1493–1505

[13]

Hu BWang KWu LYu S HAntonietti MTitirici M M. Engineering carbon materials from the hydrothermal carbonization process of biomass. Advanced Materials201022(7): 813–828

[14]

Hu BYu S HWang KLiu LXu X W. Functional carbonaceous materials from hydrothermal carbonization of biomass: An effective chemical process. Dalton Transactions (Cambridge, England)200840(40): 5414–5423

[15]

Benaddi HBandosz TJagiello JSchwarz JRouzaud JLegras DBéguin F. Surface functionality and porosity of activated carbons obtained from chemical activation of wood. Carbon200038(5): 669–674

[16]

Mohan DPittman Charles USteele P H. Pyrolysis of wood/biomass for bio-oil: A critical review. Energy & Fuels200620(3): 848–889

[17]

Di Blasi CBranca CGalgano A. Effects of diammonium phosphate on the yields and composition of products from wood pyrolysis. Industrial & Engineering Chemistry Research200746(2): 430–438

[18]

Ilharco L MGarcia A RLopes da Silva JVieira Ferreira L F. Infrared approach to the study of adsorption on cellulose: Influence of cellulose crystallinity on the adsorption of benzophenone. Langmuir199713(15): 4126–4132

[19]

Bouchard JAbatzoglou NChornet EOverend R P. Characterization of depolymerized cellulosic residues. Wood Science and Technology198923(4): 343–355

[20]

Branca CDi B C. Oxidation characteristics of chars generated from wood impregnated with (NH4)2HPO4 and (NH4)2SO4. Thermochimica Acta2007456(2): 120–127

[21]

Sing K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry198557(4): 603–619

[22]

Molina-Sabio MRodríguez-Reinoso F. Role of chemical activation in  the  development  of  carbon  porosity. Colloids  and  Surfaces. A,  Physicochemical  and  Engineering Aspects,  2004 241(1):  15–25

[23]

Oshida KKogiso KMatsubayashi KTakeuchi KKobayashi SEndo MDresselhaus M SDresselhaus G. Analysis of pore structure of activated carbon fibers using high resolution transmission electron microscopy and image processing. Journal of Materials Research199510(10): 2507–2517

[24]

Puziy A MPoddubnaya O ISocha R PGurgul JWisniewski M. XPS and NMR studies of phosphoric acid activated carbons. Carbon200846(15): 2113–2123

[25]

Kannan A GChoudhury N RDutta N K. Synthesis and characterization of methacrylate phospho-silicate hybrid for thin film applications. Polymer200748(24): 7078–7086

[26]

Pels J RKapteijn FMoulijn J AZhu QThomas K M. Evolution of nitrogen functionalities in carbonaceous materials during pyrolysis. Carbon199533(11): 1641–1653

[27]

Sethia GSayari A. Comprehensive study of ultra-microporous nitrogen-doped activated carbon for CO2 capture. Carbon201593: 68–80

[28]

Pelavin MHendrickson D NHollander J MJolly W L. Phosphorus 2p electron binding energies. Correlation with extended Hueckel charges. Journal of Physical Chemistry197074(5): 1116–1121

[29]

Marsh HRodríguez-Reinoso F. Activated carbon. Elsevier2006, 224–225

[30]

Zhou YCandelaria S LLiu QUchaker ECao G. Porous carbon with high capacitance and graphitization through controlled addition and removal of sulfur-containing compounds. Nano Energy201512: 567–577

[31]

Jawhari TRoid ACasado J. Raman spectroscopic characterization of some commercially available carbon black materials. Carbon199533(11): 1561–1565

[32]

Shimodaira NMasui A. Raman spectroscopic investigations of activated carbon materials. Journal of Applied Physics200292(2): 902–909

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (670KB)

2705

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/