Multi-functional 3D N-doped TiO2 microspheres used as scattering layers for dye-sensitized solar cells

Zijian Cui , Kaiyue Zhang , Guangyu Xing , Yaqing Feng , Shuxian Meng

Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 395 -404.

PDF (506KB)
Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 395 -404. DOI: 10.1007/s11705-017-1643-1
RESEARCH ARTICLE
RESEARCH ARTICLE

Multi-functional 3D N-doped TiO2 microspheres used as scattering layers for dye-sensitized solar cells

Author information +
History +
PDF (506KB)

Abstract

Three-dimensional TiO2 microspheres doped with N were synthesized by a simple single-step solvothermal method and the sample treated for 15 h (hereafter called TMF) was then used as scattering layers in the photoanodes of dye-sensitized solar cells (DSSCs). The TMF was characterized using scanning electron microscopy, high resolution transmission electron microscopy, Brunauer-Emmett-Teller measurements, X-ray diffraction, and X-ray photoelectron spectroscopy. The TMF had a high surface area of 93.2 m2·g1 which was beneficial for more dye-loading. Five photoanode films with different internal structures were fabricated by printing different numbers of TMF scattering layers on fluorine-doped tin oxide glass. UV-vis diffuse reflection spectra, incident photon-to-current efficiencies, photocurrent-voltage curves and electrochemical impedance spectroscopy were used to investigate the optical and electrochemical properties of these photoanodes in DSSCs. The presence of nitrogen in the TMF changed the TMF microstructure, which led to a higher open circuit voltage and a longer electron lifetime. In addition, the presence of the nitrogen significantly improved the light utilization and photocurrent. The highest photoelectric conversion efficiency achieved was 8.08%, which is much higher than that derived from typical P25 nanoparticles (6.52%).

Graphical abstract

Keywords

DSSCs / N doping / scattering layer / electron lifetime

Cite this article

Download citation ▾
Zijian Cui, Kaiyue Zhang, Guangyu Xing, Yaqing Feng, Shuxian Meng. Multi-functional 3D N-doped TiO2 microspheres used as scattering layers for dye-sensitized solar cells. Front. Chem. Sci. Eng., 2017, 11(3): 395-404 DOI:10.1007/s11705-017-1643-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

O’Regan BGrätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature1991353(6346): 737–740

[2]

Grätzel M. Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C, Photochemistry Reviews20034(2): 145–153

[3]

Hagfeldt ABoschloo GSun LKloo LPettersson H. Dye-sensitized solar cells. Chemical Reviews2010110(11): 6595–6663

[4]

Yella ALee HTsao HYi CChandiran ANazeeruddin MDiau EYeh CZakeeruddin SGrätzel M. Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science2011334(6056): 629–634

[5]

Chen WQiu YYang S. A new ZnO nanotetrapods/SnO2 nanoparticles composite photoanode for high efficiency flexible dye-sensitized solar cells. Physical Chemistry Chemical Physics201012(32): 9494–9501

[6]

Chen XMao S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chemical Reviews2007107(7): 2891–2959

[7]

Tao XWang YZhang XSun HZhang QNiu LLiu JZhou X. Visible-light wavelength matched microsphere assembly of TiO2 superfine nanorods and the enhanced photovoltaic performance. Journal of Alloys and Compounds2015631: 202–208

[8]

Ke WFang GTao HQin PWang JLei HLiu QZhao XIn situ synthesis of NiS nanowall networks on Ni foam as a TCO-free counter electrode for dye-sensitized solar cells. ACS Applied Materials & Interfaces20146(8): 5525–5530

[9]

Liu YWang SShan ZLi XTian JMei YMa HZhu K. Anatase TiO2 hollow spheres with small dimension fabricated via a simple preparation method for dye-sensitized solar cells with an ionic liquid electrolyte. Electrochimica Acta201260: 422–427

[10]

Ding YXia XChen WHu LMo LHuang YDai S. Inside-out Ostwald ripening: A facile process towards synthesizing anatase TiO2. Nano Research20169(7): 1891–1903

[11]

Haid SMarszalek MMishra AWielopolski MTeuscher JMoser JHumphry-Baker RZakeeruddin SGrätzel MBäuerle P. Significant improvement of dye-sensitized solar cell performance by small structural modification in π-conjugated donor-acceptor dyes. Advanced Functional Materials201222(6): 1291–1302

[12]

Bach UDaeneke T. A solid advancement for dye-sensitized solar cells. Angewandte Chemie International Edition201251(42): 10451–10452

[13]

Gao YFeng YZhang BZhang FPeng XLiu LMeng S. Double-N doping: A new discovery about N-doped TiO2 applied in dye-sensitized solar cells. RSC Advances20144(33): 16992–16998

[14]

Zhang ZCui ZZhang KFeng YMeng S. Samarium ions doped titania photoelectrodes for efficiency influence of dye-sensitized solar cells. Journal of the Electrochemical Society2016163(5): A644–A649

[15]

Cahen DHodes GGrätzel MGuillemoles JRiess I. Nature of photovoltaic action in dye-sensitized solar cells. Journal of Physical Chemistry B2000104(9): 2053–2059

[16]

Pan HQian JCui YXie HZhou X. Hollow anatase TiO2 porous microspheres with V-shaped channels and exposed (101) facets: Anisotropic etching and photovoltaic properties. Journal of Materials Chemistry201222(13): 6002–6009

[17]

He XLi XZhu M. The application of hollow box TiO2 as scattering centers in dye-sensitized solar cells. Journal of Power Sources2016333: 10–16

[18]

Bakhshayesh AAzadfar S. Orderly decorated nanostructural photoelectrodes with uniform spherical TiO2 particles for dye-sensitized solar cells. Frontiers of Chemical Science and Engineering20159(4): 532–540

[19]

Li WYang JJiang QLuo YHou YZhou SZhou Z. Bi-layer of nanorods and three-dimensional hierarchical structure of TiO2 for high efficiency dye-sensitized solar cells. Journal of Power Sources2015284: 428–434

[20]

Kim DKim JShin SCho JCho I. Facile one-pot synthesis of self-assembled quantum-rod TiO2 spheres with enhanced charge transport properties for dye-sensitized solar cells and solar water-splitting. Journal of Alloys and Compounds2017697: 222–230

[21]

Wang GZhu XYu J. Bilayer hollow/spindle-like anatase TiO2 photoanode for high efficiency dye-sensitized solar cells. Journal of Power Sources2015278: 344–351

[22]

Zhao PYao SWang MWang BSun PLiu FLiang XSun YLu G. High-efficiency dye-sensitized solar cells with hierarchical structures titanium dioxide to transfer photogenerated charge. Electrochimica Acta2015170: 276–283

[23]

Sun XZhou XXu YSun PHuang NSun Y. Mixed P25 nanoparticles and large rutile particles as a top scattering layer to enhance performance of nanocrystalline TiO2 based dye-sensitized solar cells. Applied Surface Science2015337: 188–194

[24]

Ding YMo LTao LMa YHu LHuang YFang XYao JXi XDai S. TiO2 nanocrystalline layer as a bridge linking TiO2 sub-microspheres layer and substrates for high-efficiency dye-sensitized solar cells. Journal of Power Sources2014272: 1046–1052

[25]

Yan KQiu YChen WZhang MYang S. A double layered photoanode made of highly crystalline TiO2 nanooctahedra and agglutinated mesoporous TiO2 microspheres for high efficiency dye sensitized solar cells. Energy & Environmental Science20114(6): 2168–2176

[26]

Chen DHuang FCheng YCaruso R. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high-performance dye-sensitized solar cells. Advanced Materials200921(21): 2206–2210

[27]

Kim YLee MKim HLim GChoi YPark NKim KLee W. Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres. Advanced Materials200921(36): 3668–3673

[28]

Son SHwang SKim CYun JJang J. Designed, synthesis of SiO2/TiO2 core/shell structure as light scattering material for highly efficient dye-sensitized solar cells. ACS Applied Materials & Interfaces20135(11): 4815–4820

[29]

Xiong YHe DJin YCameron PEdler K. Ordered mesoporous particles in titania films with hierarchical structure as scattering layers in dye-sensitized solar cells. Journal of Physical Chemistry C2015119(39): 22552–22559

[30]

Hwang DSung S. Controlled fabrication of mesoporous TiO2 hierarchical structures as scattering layers to enhance the power conversion efficiency of dye-sensitized solar cells. Physical Chemistry Chemical Physics201618(44): 30254–30260

[31]

Huber EFrost M. Light scattering by small particles. Journal of Water Supply: Research & Technology—Aqua199847(2): 87–94

[32]

Peng XFeng YMeng SZhang B. Preparation of hierarchical TiO2 films with uniformly or gradually changed pore size for use as photoelectrodes in dye-sensitized solar cells. Electrochimica Acta2014115: 255–262

[33]

Liu MPiao LZhao LJu SYan ZHe TZhou CWang W. Anatase TiO2 single crystals with exposed {001} and {110} facets: Facile synthesis and enhanced photocatalysis. Chemical Communications201046(10): 1664–1666

[34]

Lin JZhao LHeo YWang LBijarbooneh FMozer ANattestad AYamauchi YDou SKim J. Mesoporous anatase single crystals for efficient Co(2+/3+)-based dye-sensitized solar cells. Nano Energy201511: 557–567

[35]

Zhang YZhang BPeng XLiu LDong SLin LChen SMeng SFeng Y. Preparation of dye sensitized solar cells with high photocurrent and photovoltage by using mesoporous TiO2 particles as photoanode material. Nano Research20158(12): 3830–3841

[36]

Biswas SHossain MTakahashi T. Fabrication of Grätzel solar cell with TiO2/CdS bilayered photoelectrode. Thin Solid Films2008517(3): 1284–1288

[37]

Sing K S W. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and Applied Chemistry198557(4): 603–619

[38]

Ramasamy ELee J. Ordered mesoporous Zn-doped SnO2 synthesized by exotemplating for efficient dye-sensitized solar cells. Energy & Environmental Science20114(7): 2529–2536

[39]

Guo WShen YWu LGao YMa T. Effect of N dopant amount on the performance of dye-sensitized solar cells based on N-doped TiO2 electrodes. Journal of Physical Chemistry C2011115(43): 21494–21499

[40]

Qiu XBurda C. Chemically synthesized nitrogen-doped metal oxide nanoparticles. Chemical Physics2007339(1): 1–10

[41]

Fu YDu HZhang SHuang W. XPS characterization of surface and interfacial structure of sputtered TiNi films on Si substrate. Materials Science and Engineering A2005403(1): 25–31

[42]

Huo KWang HZhang XCao YChu P. Heterostructured TiO2 nanoparticles/nanotube arrays: In situ formation from amorphous TiO2 nanotube arrays in water and enhanced photocatalytic activity. ChemPlusChem201277(4): 323–329

[43]

Yu IKim YKim HLee CLee W. Size-dependent light-scattering effects of nanoporous TiO2 spheres in dye-sensitized solar cells. Journal of Materials Chemistry201121(2): 532–538

[44]

Xu JWang GFan JLiu BCao SYu J. g-C3N4 modified TiO2 nanosheets with enhanced photoelectric conversion efficiency in dye-sensitized solar cells. Journal of Power Sources2015274: 77–84

[45]

Park Nvan de Lagemaat JFrank A. Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells. Journal of Physical Chemistry B2000104(38): 8989–8994

[46]

Kang TChun KHong JMoon SKim K. Enhanced stability of photocurrent-voltage curves in Ru(II)-dye-sensitized nanocrystalline TiO2 electrodes with carboxylic acids. Journal of the Electrochemical Society2000147(8): 3049–3053

[47]

Tian HHu LZhang CLiu WHuang YMo LGuo LSheng JDai S. Retarded charge recombination in dye-sensitized nitrogen-doped TiO2 solar cells. Journal of Physical Chemistry C2010114(3): 1627–1632

[48]

Chang HLo Y. Pomegranate leaves and mulberry fruit as natural sensitizers for dye-sensitized solar cells. Solar Energy201084(10): 1833–1837

[49]

Dai GZhao LLi JWan LHu FXu ZDong BLu HWang SYu J. A novel photoanode architecture of dye-sensitized solar cells based on TiO2 hollow sphere/nanorod array double-layer film. Journal of Colloid and Interface Science2012365(1): 46–52

[50]

Yang JGao ZTian LMa PWu DYang L. Spindle-like TiO2 with high crystallinity and its application in dye sensitised solar cell. Micro & Nano Letters20116(8): 737–740

[51]

Liu WLiang ZKou DHu LDai S. Wide frequency range diagnostic impedance behavior of the multiple interfaces charge transport and transfer processes in dye-sensitized solar cells. Electrochimica Acta201388: 395–403

[52]

Nakade SSaito YKubo WKitamura TWada YYanagida S. Influence of TiO2 nanoparticle size on electron diffusion and Recombination in dye-sensitized TiO2 solar cells. Journal of Physical Chemistry B2003107(33): 8607–8611

[53]

Liao JLei BKuang DSu C. Tri-functional hierarchical TiO2 spheres consisting of anatase nanorods and nanoparticles for high efficiency dye-sensitized solar cells. Energy & Environmental Science20114(10): 4079–4085

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (506KB)

2479

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/