Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materials

Muhammad I. Asghar, Sakari Lepikko, Janne Patakangas, Janne Halme, Peter D. Lund

PDF(701 KB)
PDF(701 KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 162-173. DOI: 10.1007/s11705-017-1642-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materials

Author information +
History +

Abstract

A comparative analysis of perovskite structured cathode materials, La0.65Sr0.35MnO3 (LSM), La0.8Sr0.2CoO3 (LSC), La0.6Sr0.4FeO3 (LSF) and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF), was performed for a ceramic-carbonate nanocomposite fuel cell using composite electrolyte consisting of Gd0.1Ce0.9O1.95 (GDC) and a eutectic mixture of Na2CO3 and Li2CO3. The compatibility of these nanocomposite electrode powder materials was investigated under air, CO2 and air/CO2 atmospheres at 550 °C. Microscopy measurements together with energy dispersive X-ray spectroscopy (EDS) elementary analysis revealed few spots with higher counts of manganese relative to lanthanum and strontium under pure CO2 atmosphere. Furthermore, electrochemical impedance (EIS) analysis showed that LSC had the lowest resistance to oxygen reduction reaction (ORR) (14.12 Ω·cm2) followed by LSF (15.23 Ω·cm2), LSCF (19.38 Ω·cm2) and LSM (>300 Ω·cm2). In addition, low frequency EIS measurements (down to 50 µHz) revealed two additional semi-circles at frequencies around 1 Hz. These semicircles can yield additional information about electrochemical reactions in the device. Finally, a fuel cell was fabricated using GDC/NLC nanocomposite electrolyte and its composite with NiO and LSCF as anode and cathode, respectively. The cell produced an excellent power density of 1.06 W/cm2 at 550 °C under fuel cell conditions.

Graphical abstract

Keywords

electrode / fuel cell / low-temperature / nanocomposite / perovskite

Cite this article

Download citation ▾
Muhammad I. Asghar, Sakari Lepikko, Janne Patakangas, Janne Halme, Peter D. Lund. Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materials. Front. Chem. Sci. Eng., 2018, 12(1): 162‒173 https://doi.org/10.1007/s11705-017-1642-2

References

[1]
Rajesh S, Maccedo  D A, Nascimento  R M. Materials and processes for energy: Communicating current research and technological developments. Formatex Research Center, 2013, 485–494
[2]
Park S Y, Ahn  J H, Jeong  C W, Na  C W, Song  R H, Lee  J H. Ni-YSZ-supported tubular solid oxide fuel cells with GDC interlayer between YSZ electrolyte and LSCF cathode. International Journal of Hydrogen Energy, 2014, 39(24): 12894–12903
CrossRef Google scholar
[3]
Kakac S, Pramuanjaroenkij  A, Zhou X Y. A review of numerical modelling of solid oxide fuel cells. International Journal of Hydrogen Energy, 2007, 32(7): 761–786
CrossRef Google scholar
[4]
Ho T X, Kosinski  P, Hoffmann A C,  Vik A. Effects of heat sources on the performance of a planar solid oxide fuel cell. International Journal of Hydrogen Energy, 2010, 35(9): 4276–4284
CrossRef Google scholar
[5]
Asghar M I, Lund  P D. Improving catalyst stability in nano-structured solar and fuel cells. Catalysis Today, 2015, 259: 259–265
CrossRef Google scholar
[6]
Yokokawa H, Tu  H, Iwanschitz B,  Mai A. Fundamental mechanisms limiting solid oxide fuel cell durability. Journal of Power Sources, 2008, 182(2): 400–412
CrossRef Google scholar
[7]
O’Hayre R, Cha  S W, Colella  W, Prinz F B. Fuel cell fundamentals.New Jersey: Wiley, 2006, 245–246
[8]
Patakangas J, Ma  Y, Jing Y,  Lund P. Review and analysis of characterization methods and ionic conductivities for low-temperature fuel cells (LT-SOFC). Journal of Power Sources, 2014, 263: 315–331
CrossRef Google scholar
[9]
Fergus J W. Electrolytes for solid oxide fuel cells. Journal of Power Sources, 2006, 162(1): 30–40
CrossRef Google scholar
[10]
Ivers-Tiffee E, Weber  A, Herbstritt D. Materials and technologies for SOFC-components. Journal of the European Ceramic Society, 2001, 21(10-11): 1805–1811
CrossRef Google scholar
[11]
Kilner J A, Burriel  M. Materials for intermediate-temperature solid-oxide fuel cells. Annual Review of Materials Research, 2014, 44(1): 365–393
CrossRef Google scholar
[12]
Fergus J, Hui  R, Li X,  Wilkinson D P,  Zhang J. Solid Oxide Fuel Cells: Material Properties and Performance. Florida: Chemical Rubber Company Press, 2009, 33–37
[13]
Lee J G, Park  J H, Shul  Y G. Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 W∙cm2 at 550 °C. Nature Communications, 2014, 5: 4045
[14]
Pereira J R S,  Rajesh S,  Figueiredo F M L,  Marques F M B. Composite electrodes for ceria-carbonate intermediate temperature electrolytes. Electrochimica Acta, 2013, 90: 71–79
CrossRef Google scholar
[15]
Rajesh S, Pereira  J R S, Figueiredo  F M L, Marques  F M B. Performance of carbonate—LaCoO3 and La0.8Sr0.2Co0.2Fe0.8O3-composite cathodes under carbon dioxide. Electrochimica Acta, 2014, 125: 435–442
CrossRef Google scholar
[16]
Loureiro F J A,  Rajesh S,  Figueiredo F M L,  Marques F M B. Stability of metal oxides against Li/Na carbonates in composite electrolytes. Royal Society of Chemistry Advances, 2014, 4: 59943–59952
[17]
Chockalingam R, Jain  S, Basu S. Studies on conductivity of composite GdCeO2-carbonate electrolytes for low temperature solid oxide fuel cells. Integrated Ferroelectrics, 2010, 116(1): 23–34
CrossRef Google scholar
[18]
Tan W, Fan  L, Raza R,  Khan M A,  Zhu B. Studies of modified lithiated NiO cathode for low temperature solid oxide fuel cell with ceria-carbonate composite electrolyte. International Journal of Hydrogen Energy, 2013, 38(1): 370–376
CrossRef Google scholar
[19]
Di J, Chen  M, Wang C,  Zheng J,  Fan L, Zhu  B. Samarium doped ceria-(Li/Na)2CO3 composite electrolyte and its electrochemical properties in low temperature solid oxide fuel cell. Journal of Power Sources, 2010, 195(15): 4695–4699
CrossRef Google scholar
[20]
Richter J, Holtappelsm  P, Graule T,  Nakamura T,  Gauckler L J. Materials design for perovskite SOFC cathodes. Monatshefte für Chemie, 2009, 140(9): 985–999
CrossRef Google scholar
[21]
Ota K, Mitsushima  S, Kato S,  Asano S,  Yoshitake H,  Kamiya N. Solubilities of nickel oxide in molten carbonate. Journal of the Electrochemical Society, 1992, 139(3): 667–671
CrossRef Google scholar
[22]
Doyon J, Gilbert  T, Davies G,  Paetsch L. NiO solubility in mixed alkali/alkaline earth carbonates. Journal of the Electrochemical Society, 1987, 134(12): 3035–3038
CrossRef Google scholar
[23]
Jiang S P. A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes. Solid State Ionics, 2002, 146(1-2): 1–22
CrossRef Google scholar
[24]
Petric A, Huang  P, Tietz F. Evaluation of La-Sr-Co-Fe-O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ionics, 2002, 135(1-4): 719–725
CrossRef Google scholar
[25]
Haile S M. Fuel cell materials and components. Acta Materialia, 2003, 51(19): 5981–6000
CrossRef Google scholar
[26]
Teraoka Y, Nobunaga  T, Okamoto K,  Miura N,  Yamazoe N. Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability. Solid State Ionics, 1991, 48(3-4): 207–212
CrossRef Google scholar
[27]
Wiemhofer H D,  Bremes H G,  Nigge U,  Zipprich W. Solid state ionics. Studies of ionic transport and oxygen exchange on oxide materials for electrochemical gas sensors. Solid State Ionics, 2002, 150(1-2): 63–77
CrossRef Google scholar
[28]
Seo E S M,  Yoshito W K,  Ussui V,  Lazar D R R,  Castanho S R H M,  Paschoal J O A. Influence of the starting materials on performance of high temperature oxide fuel cells devices. Materials Research, 2004, 7(1): 215–220
CrossRef Google scholar
[29]
Adler S B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chemical Reviews, 2004, 104(10): 4791–4843
CrossRef Google scholar
[30]
Fu Y, Poizeau  S, Bertei A,  Qi C, Mohanram  A, Pietras J D,  Bazant M Z. Heterogeneous electrocatalysis in porous cathodes of solid oxide fuel cells. Electrochimica Acta, 2015, 159: 71–80
CrossRef Google scholar
[31]
Maguire E, Gharbage  B, Margues F M B,  Labrincha J A. Cathode materials for intermediate temperature SOFCs. Solid State Ionics, 2000, 127(3-4): 329–335
CrossRef Google scholar
[32]
Evans A, Martynczuk  J, Stender D,  Schneider C W,  Lippert T,  Prestat M. Low-temperature micro-solid oxide fuel cells with partially amorphous La0.6Sr0.4CoO3-s cathodes. Advanced Energy Materials, 2015, 5(1): 1400747
CrossRef Google scholar
[33]
Evans A, Karalic  S, Martynczuk J,  Prestat M,  Tolke R,  Yang Z, Gauckler  L J. La0.6Sr0.4CoO3-s thin films prepared by pulsed laser deposition as cathodes for micro-solid oxide fuel cells. ECS Transactions, 2012, 45(1): 333–336
CrossRef Google scholar
[34]
Gao Z, Mogni  L V, Miller  E C, Railsback  J G, Barnett  S A. A perspective on low-temperature solid oxide fuel cells. Energy & Environmental Science, 2016, 9(5): 1602–1644
CrossRef Google scholar
[35]
Lee C. Analysis of impedance in a molten carbonate fuel cell. Journal of Electroanalytical Chemistry, 2016, 776: 162–169
CrossRef Google scholar
[36]
Nguyen H V P,  Kang M G,  Ham H C,  Choi S H,  Han J, Nam  S W, Hong  S A, Yoon  S P. A new cathode for reduced-temperature molten carbonate fuel cells. Journal of the Electrochemical Society, 2014, 161(14): F1458–F1467
CrossRef Google scholar

Acknowledgements

This work is a part of EU-Indigo project. The authors especially thank Academy of Finland for their financial support (Grant Nos. 13282962 and 13279204) with the framework of EU New Indigo programme. This work made use of the premises from Aalto University Nanomicroscopy Center (Aalto-NMC), Laboratory of Inorganic Chemistry and Department of Forest Products Technology.

Electronic Supplementary Material

Supplementary material is availablein the online version of this article at http://dx.doi.org/10.1007/s11705-017-1642-2 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(701 KB)

Accesses

Citations

Detail

Sections
Recommended

/