Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materials

Muhammad I. Asghar , Sakari Lepikko , Janne Patakangas , Janne Halme , Peter D. Lund

Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 162 -173.

PDF (701KB)
Front. Chem. Sci. Eng. ›› 2018, Vol. 12 ›› Issue (1) : 162 -173. DOI: 10.1007/s11705-017-1642-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materials

Author information +
History +
PDF (701KB)

Abstract

A comparative analysis of perovskite structured cathode materials, La0.65Sr0.35MnO3 (LSM), La0.8Sr0.2CoO3 (LSC), La0.6Sr0.4FeO3 (LSF) and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF), was performed for a ceramic-carbonate nanocomposite fuel cell using composite electrolyte consisting of Gd0.1Ce0.9O1.95 (GDC) and a eutectic mixture of Na2CO3 and Li2CO3. The compatibility of these nanocomposite electrode powder materials was investigated under air, CO2 and air/CO2 atmospheres at 550 °C. Microscopy measurements together with energy dispersive X-ray spectroscopy (EDS) elementary analysis revealed few spots with higher counts of manganese relative to lanthanum and strontium under pure CO2 atmosphere. Furthermore, electrochemical impedance (EIS) analysis showed that LSC had the lowest resistance to oxygen reduction reaction (ORR) (14.12 Ω·cm2) followed by LSF (15.23 Ω·cm2), LSCF (19.38 Ω·cm2) and LSM (>300 Ω·cm2). In addition, low frequency EIS measurements (down to 50 µHz) revealed two additional semi-circles at frequencies around 1 Hz. These semicircles can yield additional information about electrochemical reactions in the device. Finally, a fuel cell was fabricated using GDC/NLC nanocomposite electrolyte and its composite with NiO and LSCF as anode and cathode, respectively. The cell produced an excellent power density of 1.06 W/cm2 at 550 °C under fuel cell conditions.

Graphical abstract

Keywords

electrode / fuel cell / low-temperature / nanocomposite / perovskite

Cite this article

Download citation ▾
Muhammad I. Asghar, Sakari Lepikko, Janne Patakangas, Janne Halme, Peter D. Lund. Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materials. Front. Chem. Sci. Eng., 2018, 12(1): 162-173 DOI:10.1007/s11705-017-1642-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rajesh SMaccedo  D ANascimento  R M. Materials and processes for energy: Communicating current research and technological developments. Formatex Research Center2013, 485–494

[2]

Park S YAhn  J HJeong  C WNa  C WSong  R HLee  J H. Ni-YSZ-supported tubular solid oxide fuel cells with GDC interlayer between YSZ electrolyte and LSCF cathode. International Journal of Hydrogen Energy201439(24): 12894–12903

[3]

Kakac SPramuanjaroenkij  AZhou X Y. A review of numerical modelling of solid oxide fuel cells. International Journal of Hydrogen Energy200732(7): 761–786

[4]

Ho T XKosinski  PHoffmann A C Vik A. Effects of heat sources on the performance of a planar solid oxide fuel cell. International Journal of Hydrogen Energy201035(9): 4276–4284

[5]

Asghar M ILund  P D. Improving catalyst stability in nano-structured solar and fuel cells. Catalysis Today2015259: 259–265

[6]

Yokokawa HTu  HIwanschitz B Mai A. Fundamental mechanisms limiting solid oxide fuel cell durability. Journal of Power Sources2008182(2): 400–412

[7]

O’Hayre RCha  S WColella  WPrinz F B. Fuel cell fundamentals.New Jersey: Wiley, 2006, 245–246

[8]

Patakangas JMa  YJing Y Lund P. Review and analysis of characterization methods and ionic conductivities for low-temperature fuel cells (LT-SOFC). Journal of Power Sources2014263: 315–331

[9]

Fergus J W. Electrolytes for solid oxide fuel cells. Journal of Power Sources2006162(1): 30–40

[10]

Ivers-Tiffee EWeber  AHerbstritt D. Materials and technologies for SOFC-components. Journal of the European Ceramic Society200121(10-11): 1805–1811

[11]

Kilner J ABurriel  M. Materials for intermediate-temperature solid-oxide fuel cells. Annual Review of Materials Research201444(1): 365–393

[12]

Fergus JHui  RLi X Wilkinson D P Zhang J. Solid Oxide Fuel Cells: Material Properties and Performance. Florida: Chemical Rubber Company Press, 2009, 33–37

[13]

Lee J GPark  J HShul  Y G. Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 W∙cm2 at 550 °C. Nature Communications20145: 4045

[14]

Pereira J R S Rajesh S Figueiredo F M L Marques F M B. Composite electrodes for ceria-carbonate intermediate temperature electrolytes. Electrochimica Acta201390: 71–79

[15]

Rajesh SPereira  J R SFigueiredo  F M LMarques  F M B. Performance of carbonate—LaCoO3 and La0.8Sr0.2Co0.2Fe0.8O3-composite cathodes under carbon dioxide. Electrochimica Acta2014125: 435–442

[16]

Loureiro F J A Rajesh S Figueiredo F M L Marques F M B. Stability of metal oxides against Li/Na carbonates in composite electrolytes. Royal Society of Chemistry Advances20144: 59943–59952

[17]

Chockalingam RJain  SBasu S. Studies on conductivity of composite GdCeO2-carbonate electrolytes for low temperature solid oxide fuel cells. Integrated Ferroelectrics2010116(1): 23–34

[18]

Tan WFan  LRaza R Khan M A Zhu B. Studies of modified lithiated NiO cathode for low temperature solid oxide fuel cell with ceria-carbonate composite electrolyte. International Journal of Hydrogen Energy201338(1): 370–376

[19]

Di JChen  MWang C Zheng J Fan LZhu  B. Samarium doped ceria-(Li/Na)2CO3 composite electrolyte and its electrochemical properties in low temperature solid oxide fuel cell. Journal of Power Sources2010195(15): 4695–4699

[20]

Richter JHoltappelsm  PGraule T Nakamura T Gauckler L J. Materials design for perovskite SOFC cathodes. Monatshefte für Chemie2009140(9): 985–999

[21]

Ota KMitsushima  SKato S Asano S Yoshitake H Kamiya N. Solubilities of nickel oxide in molten carbonate. Journal of the Electrochemical Society1992139(3): 667–671

[22]

Doyon JGilbert  TDavies G Paetsch L. NiO solubility in mixed alkali/alkaline earth carbonates. Journal of the Electrochemical Society1987134(12): 3035–3038

[23]

Jiang S P. A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes. Solid State Ionics2002146(1-2): 1–22

[24]

Petric AHuang  PTietz F. Evaluation of La-Sr-Co-Fe-O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ionics2002135(1-4): 719–725

[25]

Haile S M. Fuel cell materials and components. Acta Materialia200351(19): 5981–6000

[26]

Teraoka YNobunaga  TOkamoto K Miura N Yamazoe N. Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability. Solid State Ionics199148(3-4): 207–212

[27]

Wiemhofer H D Bremes H G Nigge U Zipprich W. Solid state ionics. Studies of ionic transport and oxygen exchange on oxide materials for electrochemical gas sensors. Solid State Ionics2002150(1-2): 63–77

[28]

Seo E S M Yoshito W K Ussui V Lazar D R R Castanho S R H M Paschoal J O A. Influence of the starting materials on performance of high temperature oxide fuel cells devices. Materials Research20047(1): 215–220

[29]

Adler S B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chemical Reviews2004104(10): 4791–4843

[30]

Fu YPoizeau  SBertei A Qi CMohanram  APietras J D Bazant M Z. Heterogeneous electrocatalysis in porous cathodes of solid oxide fuel cells. Electrochimica Acta2015159: 71–80

[31]

Maguire EGharbage  BMargues F M B Labrincha J A. Cathode materials for intermediate temperature SOFCs. Solid State Ionics2000127(3-4): 329–335

[32]

Evans AMartynczuk  JStender D Schneider C W Lippert T Prestat M. Low-temperature micro-solid oxide fuel cells with partially amorphous La0.6Sr0.4CoO3-s cathodes. Advanced Energy Materials20155(1): 1400747

[33]

Evans AKaralic  SMartynczuk J Prestat M Tolke R Yang ZGauckler  L J. La0.6Sr0.4CoO3-s thin films prepared by pulsed laser deposition as cathodes for micro-solid oxide fuel cells. ECS Transactions201245(1): 333–336

[34]

Gao ZMogni  L VMiller  E CRailsback  J GBarnett  S A. A perspective on low-temperature solid oxide fuel cells. Energy & Environmental Science20169(5): 1602–1644

[35]

Lee C. Analysis of impedance in a molten carbonate fuel cell. Journal of Electroanalytical Chemistry2016776: 162–169

[36]

Nguyen H V P Kang M G Ham H C Choi S H Han JNam  S WHong  S AYoon  S P. A new cathode for reduced-temperature molten carbonate fuel cells. Journal of the Electrochemical Society2014161(14): F1458–F1467

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (701KB)

Supplementary files

FCE-16068-of-AM_suppl_1

2522

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/