Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materials
Muhammad I. Asghar, Sakari Lepikko, Janne Patakangas, Janne Halme, Peter D. Lund
Comparative analysis of ceramic-carbonate nanocomposite fuel cells using composite GDC/NLC electrolyte with different perovskite structured cathode materials
A comparative analysis of perovskite structured cathode materials, La0.65Sr0.35MnO3 (LSM), La0.8Sr0.2CoO3 (LSC), La0.6Sr0.4FeO3 (LSF) and La0.6Sr0.4Co0.2Fe0.8O3 (LSCF), was performed for a ceramic-carbonate nanocomposite fuel cell using composite electrolyte consisting of Gd0.1Ce0.9O1.95 (GDC) and a eutectic mixture of Na2CO3 and Li2CO3. The compatibility of these nanocomposite electrode powder materials was investigated under air, CO2 and air/CO2 atmospheres at 550 °C. Microscopy measurements together with energy dispersive X-ray spectroscopy (EDS) elementary analysis revealed few spots with higher counts of manganese relative to lanthanum and strontium under pure CO2 atmosphere. Furthermore, electrochemical impedance (EIS) analysis showed that LSC had the lowest resistance to oxygen reduction reaction (ORR) (14.12 Ω·cm2) followed by LSF (15.23 Ω·cm2), LSCF (19.38 Ω·cm2) and LSM (>300 Ω·cm2). In addition, low frequency EIS measurements (down to 50 µHz) revealed two additional semi-circles at frequencies around 1 Hz. These semicircles can yield additional information about electrochemical reactions in the device. Finally, a fuel cell was fabricated using GDC/NLC nanocomposite electrolyte and its composite with NiO and LSCF as anode and cathode, respectively. The cell produced an excellent power density of 1.06 W/cm2 at 550 °C under fuel cell conditions.
electrode / fuel cell / low-temperature / nanocomposite / perovskite
[1] |
Rajesh S, Maccedo D A, Nascimento R M. Materials and processes for energy: Communicating current research and technological developments. Formatex Research Center, 2013, 485–494
|
[2] |
Park S Y, Ahn J H, Jeong C W, Na C W, Song R H, Lee J H. Ni-YSZ-supported tubular solid oxide fuel cells with GDC interlayer between YSZ electrolyte and LSCF cathode. International Journal of Hydrogen Energy, 2014, 39(24): 12894–12903
CrossRef
Google scholar
|
[3] |
Kakac S, Pramuanjaroenkij A, Zhou X Y. A review of numerical modelling of solid oxide fuel cells. International Journal of Hydrogen Energy, 2007, 32(7): 761–786
CrossRef
Google scholar
|
[4] |
Ho T X, Kosinski P, Hoffmann A C, Vik A. Effects of heat sources on the performance of a planar solid oxide fuel cell. International Journal of Hydrogen Energy, 2010, 35(9): 4276–4284
CrossRef
Google scholar
|
[5] |
Asghar M I, Lund P D. Improving catalyst stability in nano-structured solar and fuel cells. Catalysis Today, 2015, 259: 259–265
CrossRef
Google scholar
|
[6] |
Yokokawa H, Tu H, Iwanschitz B, Mai A. Fundamental mechanisms limiting solid oxide fuel cell durability. Journal of Power Sources, 2008, 182(2): 400–412
CrossRef
Google scholar
|
[7] |
O’Hayre R, Cha S W, Colella W, Prinz F B. Fuel cell fundamentals.New Jersey: Wiley, 2006, 245–246
|
[8] |
Patakangas J, Ma Y, Jing Y, Lund P. Review and analysis of characterization methods and ionic conductivities for low-temperature fuel cells (LT-SOFC). Journal of Power Sources, 2014, 263: 315–331
CrossRef
Google scholar
|
[9] |
Fergus J W. Electrolytes for solid oxide fuel cells. Journal of Power Sources, 2006, 162(1): 30–40
CrossRef
Google scholar
|
[10] |
Ivers-Tiffee E, Weber A, Herbstritt D. Materials and technologies for SOFC-components. Journal of the European Ceramic Society, 2001, 21(10-11): 1805–1811
CrossRef
Google scholar
|
[11] |
Kilner J A, Burriel M. Materials for intermediate-temperature solid-oxide fuel cells. Annual Review of Materials Research, 2014, 44(1): 365–393
CrossRef
Google scholar
|
[12] |
Fergus J, Hui R, Li X, Wilkinson D P, Zhang J. Solid Oxide Fuel Cells: Material Properties and Performance. Florida: Chemical Rubber Company Press, 2009, 33–37
|
[13] |
Lee J G, Park J H, Shul Y G. Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2 W∙cm‒2 at 550 °C. Nature Communications, 2014, 5: 4045
|
[14] |
Pereira J R S, Rajesh S, Figueiredo F M L, Marques F M B. Composite electrodes for ceria-carbonate intermediate temperature electrolytes. Electrochimica Acta, 2013, 90: 71–79
CrossRef
Google scholar
|
[15] |
Rajesh S, Pereira J R S, Figueiredo F M L, Marques F M B. Performance of carbonate—LaCoO3 and La0.8Sr0.2Co0.2Fe0.8O3-composite cathodes under carbon dioxide. Electrochimica Acta, 2014, 125: 435–442
CrossRef
Google scholar
|
[16] |
Loureiro F J A, Rajesh S, Figueiredo F M L, Marques F M B. Stability of metal oxides against Li/Na carbonates in composite electrolytes. Royal Society of Chemistry Advances, 2014, 4: 59943–59952
|
[17] |
Chockalingam R, Jain S, Basu S. Studies on conductivity of composite GdCeO2-carbonate electrolytes for low temperature solid oxide fuel cells. Integrated Ferroelectrics, 2010, 116(1): 23–34
CrossRef
Google scholar
|
[18] |
Tan W, Fan L, Raza R, Khan M A, Zhu B. Studies of modified lithiated NiO cathode for low temperature solid oxide fuel cell with ceria-carbonate composite electrolyte. International Journal of Hydrogen Energy, 2013, 38(1): 370–376
CrossRef
Google scholar
|
[19] |
Di J, Chen M, Wang C, Zheng J, Fan L, Zhu B. Samarium doped ceria-(Li/Na)2CO3 composite electrolyte and its electrochemical properties in low temperature solid oxide fuel cell. Journal of Power Sources, 2010, 195(15): 4695–4699
CrossRef
Google scholar
|
[20] |
Richter J, Holtappelsm P, Graule T, Nakamura T, Gauckler L J. Materials design for perovskite SOFC cathodes. Monatshefte für Chemie, 2009, 140(9): 985–999
CrossRef
Google scholar
|
[21] |
Ota K, Mitsushima S, Kato S, Asano S, Yoshitake H, Kamiya N. Solubilities of nickel oxide in molten carbonate. Journal of the Electrochemical Society, 1992, 139(3): 667–671
CrossRef
Google scholar
|
[22] |
Doyon J, Gilbert T, Davies G, Paetsch L. NiO solubility in mixed alkali/alkaline earth carbonates. Journal of the Electrochemical Society, 1987, 134(12): 3035–3038
CrossRef
Google scholar
|
[23] |
Jiang S P. A comparison of O2 reduction reactions on porous (La,Sr)MnO3 and (La,Sr)(Co,Fe)O3 electrodes. Solid State Ionics, 2002, 146(1-2): 1–22
CrossRef
Google scholar
|
[24] |
Petric A, Huang P, Tietz F. Evaluation of La-Sr-Co-Fe-O perovskites for solid oxide fuel cells and gas separation membranes. Solid State Ionics, 2002, 135(1-4): 719–725
CrossRef
Google scholar
|
[25] |
Haile S M. Fuel cell materials and components. Acta Materialia, 2003, 51(19): 5981–6000
CrossRef
Google scholar
|
[26] |
Teraoka Y, Nobunaga T, Okamoto K, Miura N, Yamazoe N. Influence of constituent metal cations in substituted LaCoO3 on mixed conductivity and oxygen permeability. Solid State Ionics, 1991, 48(3-4): 207–212
CrossRef
Google scholar
|
[27] |
Wiemhofer H D, Bremes H G, Nigge U, Zipprich W. Solid state ionics. Studies of ionic transport and oxygen exchange on oxide materials for electrochemical gas sensors. Solid State Ionics, 2002, 150(1-2): 63–77
CrossRef
Google scholar
|
[28] |
Seo E S M, Yoshito W K, Ussui V, Lazar D R R, Castanho S R H M, Paschoal J O A. Influence of the starting materials on performance of high temperature oxide fuel cells devices. Materials Research, 2004, 7(1): 215–220
CrossRef
Google scholar
|
[29] |
Adler S B. Factors governing oxygen reduction in solid oxide fuel cell cathodes. Chemical Reviews, 2004, 104(10): 4791–4843
CrossRef
Google scholar
|
[30] |
Fu Y, Poizeau S, Bertei A, Qi C, Mohanram A, Pietras J D, Bazant M Z. Heterogeneous electrocatalysis in porous cathodes of solid oxide fuel cells. Electrochimica Acta, 2015, 159: 71–80
CrossRef
Google scholar
|
[31] |
Maguire E, Gharbage B, Margues F M B, Labrincha J A. Cathode materials for intermediate temperature SOFCs. Solid State Ionics, 2000, 127(3-4): 329–335
CrossRef
Google scholar
|
[32] |
Evans A, Martynczuk J, Stender D, Schneider C W, Lippert T, Prestat M. Low-temperature micro-solid oxide fuel cells with partially amorphous La0.6Sr0.4CoO3-s cathodes. Advanced Energy Materials, 2015, 5(1): 1400747
CrossRef
Google scholar
|
[33] |
Evans A, Karalic S, Martynczuk J, Prestat M, Tolke R, Yang Z, Gauckler L J. La0.6Sr0.4CoO3-s thin films prepared by pulsed laser deposition as cathodes for micro-solid oxide fuel cells. ECS Transactions, 2012, 45(1): 333–336
CrossRef
Google scholar
|
[34] |
Gao Z, Mogni L V, Miller E C, Railsback J G, Barnett S A. A perspective on low-temperature solid oxide fuel cells. Energy & Environmental Science, 2016, 9(5): 1602–1644
CrossRef
Google scholar
|
[35] |
Lee C. Analysis of impedance in a molten carbonate fuel cell. Journal of Electroanalytical Chemistry, 2016, 776: 162–169
CrossRef
Google scholar
|
[36] |
Nguyen H V P, Kang M G, Ham H C, Choi S H, Han J, Nam S W, Hong S A, Yoon S P. A new cathode for reduced-temperature molten carbonate fuel cells. Journal of the Electrochemical Society, 2014, 161(14): F1458–F1467
CrossRef
Google scholar
|
/
〈 | 〉 |