Nanovaccines for remodeling the suppressive tumor microenvironment: New horizons in cancer immunotherapy

Kai Shi, Matthew Haynes, Leaf Huang

PDF(235 KB)
PDF(235 KB)
Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 676-684. DOI: 10.1007/s11705-017-1640-4
REVIEW ARTICLE
REVIEW ARTICLE

Nanovaccines for remodeling the suppressive tumor microenvironment: New horizons in cancer immunotherapy

Author information +
History +

Abstract

Despite limited successes in clinical development, therapeutic cancer vaccines have experienced resurgence in recent years due to an enhanced emphasis upon co-mitigating factors underlying immune response. Specifically, reversing the immune-suppressive effects of the tumor microenvironment, mediated by a variety of cellular and molecular signaling mechanisms, has become fundamental toward enhancing therapeutic efficacy. Therein, our lab has implemented various nano-vaccines based on the lipid-coated calcium phosphate platform for combined immunotherapy, in which antigenic, epitope-associated peptides as well as immune-suppression inhibitors can be co-delivered, often functioning through the same formulation. In probing the mechanism of action of such systems in vitro andin vivo, an improved effect synergy can be elucidated, inspiring future preclinical efforts and hope for clinical success.

Graphical abstract

Keywords

vaccine / nanoparticle / tumor / immunotherapy / microenvironment

Cite this article

Download citation ▾
Kai Shi, Matthew Haynes, Leaf Huang. Nanovaccines for remodeling the suppressive tumor microenvironment: New horizons in cancer immunotherapy. Front. Chem. Sci. Eng., 2017, 11(4): 676‒684 https://doi.org/10.1007/s11705-017-1640-4

References

[1]
Vanneman M, Dranoff G. Combining immunotherapy and targeted therapies in cancer treatment. Nature Reviews. Cancer, 2012, 12(4): 237–251
CrossRef Google scholar
[2]
Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature, 2011, 480(7378): 480–489
CrossRef Google scholar
[3]
Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nature Reviews. Cancer, 2012, 12(4): 265–277
CrossRef Google scholar
[4]
Jeanbart L, Swartz M A. Engineering opportunities in cancer immunotherapy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(47): 14467–14472
CrossRef Google scholar
[5]
Anguille S, Smits E L, Lion E, van Tendeloo V F, Berneman Z N. Clinical use of dendritic cells for cancer therapy. Lancet Oncology, 2014, 15(7): e257–e267
CrossRef Google scholar
[6]
Melero I, Gaudernack G, Gerritsen W, Huber C, Parmiani G, Scholl S, Thatcher N, Wagstaff J, Zielinski C, Faulkner I, Therapeutic vaccines for cancer: An overview of clinical trials. Nature Reviews. Clinical Oncology, 2014, 11(9): 509–524
CrossRef Google scholar
[7]
Bloy N, Pol J, Aranda F, Eggermont A, Cremer I, Fridman W H, Fucikova J, Galon J, Tartour E, Spisek R, Trial watch: Dendritic cell-based anticancer therapy. OncoImmunology, 2014, 3(11): e963424
CrossRef Google scholar
[8]
Lesterhuis W J, de Vries I J, Adema G J, Punt C J. Dendritic cell-based vaccines in cancer immunotherapy: An update on clinical and immunological results. Annals of Oncology, 2004, 15(Suppl 4): 145–151
[9]
Smith J D, Morton L D, Ulery B D. Nanoparticles as synthetic vaccines. Current Opinion in Biotechnology, 2015, 34: 217–224
CrossRef Google scholar
[10]
Yang L, Li W, Kirberger M, Liao W, Ren J. Design of nanomaterial based systems for novel vaccine development. Biomaterials Science, 2016, 4(5): 785–802
CrossRef Google scholar
[11]
Schwendener R A. Liposomes as vaccine delivery systems: A review of the recent advances. Therapeutic Advances in Vaccines, 2014, 2(6): 159–182
CrossRef Google scholar
[12]
Silva J M, Videira M, Gaspar R, Preat V, Florindo H F. Immune system targeting by biodegradable nanoparticles for cancer vaccines. Journal of Controlled Release, 2013, 168(2): 179–199
CrossRef Google scholar
[13]
Quail D F, Joyce J A. Microenvironmental regulation of tumor progression and metastasis. Nature Medicine, 2013, 19(11): 1423–1437
CrossRef Google scholar
[14]
Motz G T, Coukos G. Deciphering and reversing tumor immune suppression. Immunity, 2013, 39(1): 61–73
CrossRef Google scholar
[15]
Munn D H, Bronte V. Immune suppressive mechanisms in the tumor microenvironment. Current Opinion in Immunology, 2016, 39: 1–6
CrossRef Google scholar
[16]
Gajewski T F, Schreiber H, Fu Y X. Innate and adaptive immune cells in the tumor microenvironment. Nature Immunology, 2013, 14(10): 1014–1022
CrossRef Google scholar
[17]
Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nature Reviews. Cancer, 2005, 5(4): 263–274
CrossRef Google scholar
[18]
Rabinovich G A, Gabrilovich D, Sotomayor E M. Immunosuppressive strategies that are mediated by tumor cells. Annual Review of Immunology, 2007, 25(1): 267–296
CrossRef Google scholar
[19]
Shiao S L, Ganesan A P, Rugo H S, Coussens L M. Immune microenvironments in solid tumors: New targets for therapy. Genes & Development, 2011, 25(24): 2559–2572
CrossRef Google scholar
[20]
McAllister S S, Weinberg R A. The tumour-induced systemic environment as a critical regulator of cancer progression and metastasis. Nature Cell Biology, 2014, 16(8): 717–727
CrossRef Google scholar
[21]
Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo M J. CD4+CD25+Foxp3+ regulatory T-cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T cells. Nature Immunology, 2007, 8(12): 1353–1362
CrossRef Google scholar
[22]
Chakraborty N G, Chattopadhyay S, Mehrotra S, Chhabra A, Mukherji B. Regulatory T-cell response and tumor vaccine-induced cytotoxic T lymphocytes in human melanoma. Human Immunology, 2004, 65(8): 794–802
CrossRef Google scholar
[23]
Huang Y H, Zozulya A L, Weidenfeller C, Schwab N, Wiendl H. T cell suppression by naturally occurring HLA-G-expressing regulatory CD4+ T cells is IL-10-dependent and reversible. Journal of Leukocyte Biology, 2009, 86(2): 273–281
CrossRef Google scholar
[24]
Huang B, Pan P Y, Li Q, Sato A I, Levy D E, Bromberg J, Divino C M, Chen S H. Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell energy in tumor-bearing host. Cancer Research, 2006, 66(2): 1123–1131
CrossRef Google scholar
[25]
Zea A H, Rodriguez P C, Atkins M B, Hernandez C, Signoretti S, Zabaleta J, McDermott D, Quiceno D, Youmans A, O’Neill A, Arginase-producing myeloid suppressor cells in renal cell carcinoma patients: A mechanism of tumor evasion. Cancer Research, 2005, 65(8): 3044–3048
[26]
Gabrilovich D I, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nature Reviews. Immunology, 2009, 9(3): 162–174
CrossRef Google scholar
[27]
Wu A A, Drake V, Huang H S, Chiu S, Zheng L. Reprogramming the tumor microenvironment: Tumor-induced immunosuppressive factors paralyze T-cells. OncoImmunology, 2015, 4(7): e1016700
CrossRef Google scholar
[28]
Qin Z, Noffz G, Mohaupt M, Blankenstein T. Interleukin-10 prevents dendritic cell accumulation and vaccination with granulocyte-macrophage colony-stimulating factor gene-modified tumor cells. Journal of Immunology (Baltimore, Md.: 1950), 1997, 159(2): 770–776
[29]
Peng Y, Laouar Y, Li M O, Green E A, Flavell R A. TGF-beta regulates in vivo expansion of Foxp3-expressing CD4+CD25+ regulatory T-cells responsible for protection against diabetes. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(13): 4572–4577
CrossRef Google scholar
[30]
Kim R, Emi M, Tanabe K, Arihiro K. Tumor-driven evolution of immunosuppressive networks during malignant progression. Cancer Research, 2006, 66(11): 5527–5536
CrossRef Google scholar
[31]
Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, Boon T, van den Eynde B J. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nature Medicine, 2003, 9(10): 1269–1274
CrossRef Google scholar
[32]
Munn D H, Sharma M D, Lee J R, Jhaver K G, Johnson T S, Keskin D B, Marshall B, Chandler P, Antonia S J, Burgess R, Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science, 2002, 297(5588): 1867–1870
CrossRef Google scholar
[33]
Rohrig U F, Majjigapu S R, Vogel P, Zoete V, Michielin O. Challenges in the discovery of indoleamine 2,3-dioxygenase 1 (IDO1) inhibitors. Journal of Medicinal Chemistry, 2015, 58(24): 9421–9437
CrossRef Google scholar
[34]
Saito T, Yokosuka T, Hashimoto-Tane A. Dynamic regulation of T-cell activation and co-stimulation through TCR-microclusters. FEBS Letters, 2010, 584(24): 4865–4871
CrossRef Google scholar
[35]
Walker L S, Sansom D M. Confusing signals: Recent progress in CTLA-4 biology. Trends in Immunology, 2015, 36(2): 63–70
CrossRef Google scholar
[36]
Dong H, Strome S E, Salomao D R, Tamura H, Hirano F, Flies D B, Roche P C, Lu J, Zhu G, Tamada K, Tumor-associated B7-H1 promotes T-cell apoptosis: A potential mechanism of immune evasion. Nature Medicine, 2002, 8(8): 793–800
[37]
Dong H, Zhu G, Tamada K, Chen L. B7-H1, a third member of the B7 family, co-stimulates T-cell proliferation and interleukin-10 secretion. Nature Medicine, 1999, 5(12): 1365–1369
CrossRef Google scholar
[38]
Dong H, Chen L. B7-H1 pathway and its role in the evasion of tumor immunity. Journal of Molecular Medicine, 2003, 81(5): 281–287
CrossRef Google scholar
[39]
Curiel T J, Wei S, Dong H, Alvarez X, Cheng P, Mottram P, Krzysiek R, Knutson K L, Daniel B, Zimmermann M C, Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nature Medicine, 2003, 9(5): 562–567
CrossRef Google scholar
[40]
Webster R M. The immune checkpoint inhibitors: Where are we now? Nature Reviews. Drug Discovery, 2014, 13(12): 883–884
CrossRef Google scholar
[41]
Juliano R L, Carver K. Cellular uptake and intracellular trafficking of oligonucleotides. Advanced Drug Delivery Reviews, 2015, 87: 35–45
CrossRef Google scholar
[42]
Midoux P, Pichon C. Lipid-based mRNA vaccine delivery systems. Expert Review of Vaccines, 2015, 14(2): 221–234
CrossRef Google scholar
[43]
Marceau F, Bawolak M T, Lodge R, Bouthillier J, Gagne-Henley A, Gaudreault R C, Morissette G. Cation trapping by cellular acidic compartments: Beyond the concept of lysosomotropic drugs. Toxicology and Applied Pharmacology, 2012, 259(1): 1–12
CrossRef Google scholar
[44]
Mansourian M, Badiee A, Jalali S A, Shariat S, Yazdani M, Amin M, Jaafari M R. Effective induction of anti-tumor immunity using p5 HER-2/neu derived peptide encapsulated in fusogenic DOTAP cationic liposomes co-administrated with CpG-ODN. Immunology Letters, 2014, 162(1): 87–93
CrossRef Google scholar
[45]
Horiuchi Y, Takagi A, Uchida T, Akatsuka T. Targeting cryptic epitope with modified antigen coupled to the surface of liposomes induces strong antitumor CD8 T-cell immune responses in vivo. Oncology Reports, 2015, 34(6): 2827–2836
[46]
Kojima N, Biao L, Nakayama T, Ishii M, Ikehara Y, Tsujimura K. Oligomannose-coated liposomes as a therapeutic antigen-delivery and an adjuvant vehicle for induction of in vivo tumor immunity. Journal of Controlled Release, 2008, 129(1): 26–32
CrossRef Google scholar
[47]
Ikehara Y, Shiuchi N, Kabata-Ikehara S, Nakanishi H, Yokoyama N, Takagi H, Nagata T, Koide Y, Kuzushima K, Takahashi T, Effective induction of anti-tumor immune responses with oligomannose-coated liposome targeting to intraperitoneal phagocytic cells. Cancer Letters, 2008, 260(1-2): 137–145
CrossRef Google scholar
[48]
Choi D H, Kim K S, Yang S H, Chung D H, Song B, Sprent J, Cho J H, Sung Y C. Dendritic cell internalization of alpha-galactosylceramide from CD8 T-cells induces potent antitumor CD8 T-cell responses. Cancer Research, 2011, 71(24): 7442–7451
CrossRef Google scholar
[49]
Neumann S, Young K, Compton B, Anderson R, Painter G, Hook S. Synthetic TRP2 long-peptide and alpha-galactosylceramide formulated into cationic liposomes elicit CD8+ T-cell responses and prevent tumour progression. Vaccine, 2015, 33(43): 5838–5844
CrossRef Google scholar
[50]
Xu Z, Ramishetti S, Tseng Y C, Guo S, Wang Y, Huang L. Multifunctional nanoparticles co-delivering Trp2 peptide and CpG adjuvant induce potent cytotoxic T-lymphocyte response against melanoma and its lung metastasis. Journal of Controlled Release, 2013, 172(1): 259–265
CrossRef Google scholar
[51]
Xu Z, Wang Y, Zhang L, Huang L. Nanoparticle-delivered transforming growth factor-beta siRNA enhances vaccination against advanced melanoma by modifying tumor microenvironment. ACS Nano, 2014, 8(4): 3636–3645
CrossRef Google scholar
[52]
Vangasseri D P, Han S J, Huang L. Lipid-protamine-DNA-mediated antigen delivery. Current Drug Delivery, 2005, 2(4): 401–406
CrossRef Google scholar
[53]
Dileo J, Banerjee R, Whitmore M, Nayak J V, Falo L D Jr, Huang L. Lipid-protamine-DNA-mediated antigen delivery to antigen-presenting cells results in enhanced anti-tumor immune responses. Molecular Therapy, 2003, 7(5): 640–648
CrossRef Google scholar
[54]
Miura N, Shaheen S M, Akita H, Nakamura T, Harashima H. A KALA-modified lipid nanoparticle containing CpG-free plasmid DNA as a potential DNA vaccine carrier for antigen presentation and as an immune-stimulative adjuvant. Nucleic Acids Research, 2015, 43(3): 1317–1331
CrossRef Google scholar
[55]
Shaheen S M, Akita H, Nakamura T, Takayama S, Futaki S, Yamashita A, Katoono R, Yui N, Harashima H. KALA-modified multi-layered nanoparticles as gene carriers for MHC class-I mediated antigen presentation for a DNA vaccine. Biomaterials, 2011, 32(26): 6342–6350
CrossRef Google scholar
[56]
Zhuang X, Wu T, Zhao Y, Hu X, Bao Y, Guo Y, Song Q, Li G, Tan S, Zhang Z. Lipid-enveloped zinc phosphate hybrid nanoparticles for codelivery of H-2K(b) and H-2D(b)-restricted antigenic peptides and monophosphoryl lipid A to induce antitumor immunity against melanoma. Journal of Controlled Release, 2016, 228: 26–37
CrossRef Google scholar
[57]
Ruiz-de-Angulo A, Zabaleta A, Gomez-Vallejo V, Llop J, Mareque-Rivas J C. Microdosed Lipid-coated (67)Ga-magnetite enhances antigen-specific immunity by image tracked delivery of antigen and CpG to lymph nodes. ACS Nano, 2016, 10(1): 1602–1618
CrossRef Google scholar
[58]
Zhang Z, Tongchusak S, Mizukami Y, Kang Y J, Ioji T, Touma M, Reinhold B, Keskin D B, Reinherz E L, Sasada T. Induction of anti-tumor cytotoxic T-cell responses through PLGA-nanoparticle mediated antigen delivery. Biomaterials, 2011, 32(14): 3666–3678
CrossRef Google scholar
[59]
Ma W, Chen M, Kaushal S, McElroy M, Zhang Y, Ozkan C, Bouvet M, Kruse C, Grotjahn D, Ichim T, PLGA nanoparticle-mediated delivery of tumor antigenic peptides elicits effective immune responses. International Journal of Nanomedicine, 2012, 7: 1475–1487
CrossRef Google scholar
[60]
Heo M B, Lim Y T. Programmed nanoparticles for combined immunomodulation, antigen presentation and tracking of immunotherapeutic cells. Biomaterials, 2014, 35(1): 590–600
CrossRef Google scholar
[61]
Guo Y, Wang D, Song Q, Wu T, Zhuang X, Bao Y, Kong M, Qi Y, Tan S, Zhang Z. Erythrocyte membrane-enveloped polymeric nanoparticles as nanovaccine for induction of antitumor immunity against melanoma. ACS Nano, 2015, 9(7): 6918–6933
CrossRef Google scholar
[62]
Silva J M, Zupancic E, Vandermeulen G, Oliveira V G, Salgado A, Videira M, Gaspar M, Graca L, Preat V, Florindo H F. In vivo delivery of peptides and Toll-like receptor ligands by mannose-functionalized polymeric nanoparticles induces prophylactic and therapeutic anti-tumor immune responses in a melanoma model. Journal of Controlled Release, 2015, 198: 91–103
CrossRef Google scholar
[63]
Cui L, Osada K, Imaizumi A, Kataoka K, Nakano K. Feasibility of a subcutaneously administered block/homo-mixed polyplex micelle as a carrier for DNA vaccination in a mouse tumor model. Journal of Controlled Release, 2015, 206: 220–231
CrossRef Google scholar
[64]
Furugaki K, Cui L, Kunisawa Y, Osada K, Shinkai K, Tanaka M, Kataoka K, Nakano K. Intraperitoneal administration of a tumor-associated antigen SART3, CD40L, and GM-CSF gene-loaded polyplex micelle elicits a vaccine effect in mouse tumor models. PLoS One, 2014, 9(7): e101854
CrossRef Google scholar
[65]
Luo Z, Wang C, Yi H, Li P, Pan H, Liu L, Cai L, Ma Y. Nanovaccine loaded with poly I:C and STAT3 siRNA robustly elicits anti-tumor immune responses through modulating tumor-associated dendritic cells in vivo. Biomaterials, 2015, 38: 50–60
CrossRef Google scholar
[66]
Luo Z, Li P, Deng J, Gao N, Zhang Y, Pan H, Liu L, Wang C, Cai L, Ma Y. Cationic polypeptide micelle-based antigen delivery system: A simple and robust adjuvant to improve vaccine efficacy. Journal of Controlled Release, 2013, 170(2): 259–267
CrossRef Google scholar
[67]
Li J, Chen Y C, Tseng Y C, Mozumdar S, Huang L. Biodegradable calcium phosphate nanoparticle with lipid coating for systemic siRNA delivery. Journal of Controlled Release, 2010, 142(3): 416–421
CrossRef Google scholar
[68]
Li J, Yang Y, Huang L. Calcium phosphate nanoparticles with an asymmetric lipid bilayer coating for siRNA delivery to the tumor. Journal of Controlled Release, 2012, 158(1): 108–114
CrossRef Google scholar
[69]
Haynes M T, Huang L. Lipid-coated calcium phosphate nanoparticles for nonviral gene therapy. Advances in Genetics Incorporating Molecular Genetic Medicine, 2014, 88: 205–229
[70]
Curran M A, Montalvo W, Yagita H, Allison J P. PD-1 and CTLA-4 combination blockade expands infiltrating T-cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(9): 4275–4280
CrossRef Google scholar
[71]
Fridlender Z G, Buchlis G, Kapoor V, Cheng G, Sun J, Singhal S, Crisanti M C, Wang L C, Heitjan D, Snyder L A, et al. CCL2 blockade augments cancer immunotherapy. Cancer Research, 2010, 70(1): 109–118
CrossRef Google scholar
[72]
Kusmartsev S, Cheng F, Yu B, Nefedova Y, Sotomayor E, Lush R, Gabrilovich D. All-trans-retinoic acid eliminates immature myeloid cells from tumor-bearing mice and improves the effect of vaccination. Cancer Research, 2003, 63(15): 4441–4449
[73]
Zeng J, Cai S, Yi Y, He Y, Wang Z, Jiang G, Li X, Du J. Prevention of spontaneous tumor development in a ret transgenic mouse model by ret peptide vaccination with indoleamine 2,3-dioxygenase inhibitor 1-methyl tryptophan. Cancer Research, 2009, 69(9): 3963–3970
CrossRef Google scholar
[74]
Liao D, Liu Z, Wrasidlo W J, Luo Y, Nguyen G, Chen T, Xiang R, Reisfeld R A. Targeted therapeutic remodeling of the tumor microenvironment improves an HER-2 DNA vaccine and prevents recurrence in a murine breast cancer model. Cancer Research, 2011, 71(17): 5688–5696
CrossRef Google scholar
[75]
Chono S, Li S D, Conwell C C, Huang L. An efficient and low immunostimulatory nanoparticle formulation for systemic siRNA delivery to the tumor. Journal of Controlled Release, 2008, 131(1): 64–69
CrossRef Google scholar
[76]
Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: Role of STAT3 in the tumour microenvironment. Nature Reviews. Immunology, 2007, 7(1): 41–51
CrossRef Google scholar
[77]
Yu H, Lee H, Herrmann A, Buettner R, Jove R. Revisiting STAT3 signalling in cancer: New and unexpected biological functions. Nature Reviews. Cancer, 2014, 14(11): 736–746
CrossRef Google scholar
[78]
Furtek S L, Backos D S, Matheson C J, Reigan P. Strategies and approaches of targeting STAT3 for cancer treatment. ACS Chemical Biology, 2016, 11(2): 308–318
CrossRef Google scholar
[79]
Al Zaid Siddiquee K, Turkson J. STAT3 as a target for inducing apoptosis in solid and hematological tumors. Cell Research, 2008, 18(2): 254–267
CrossRef Google scholar
[80]
Singh M, Ramos I, Asafu-Adjei D, Quispe-Tintaya W, Chandra D, Jahangir A, Zang X, Aggarwal B B, Gravekamp C. Curcumin improves the therapeutic efficacy of Listeria(at)-Mage-b vaccine in correlation with improved T-cell responses in blood of a triple-negative breast cancer model 4T1. Cancer Medicine, 2013, 2(4): 571–582
CrossRef Google scholar
[81]
Molavi O, Ma Z, Hamdy S, Lai R, Lavasanifar A, Samuel J. Synergistic antitumor effects of CpG oligodeoxynucleotide and STAT3 inhibitory agent JSI-124 in a mouse melanoma tumor model. Immunology and Cell Biology, 2008, 86(6): 506–514
CrossRef Google scholar
[82]
Yu H, Pardoll D, Jove R. STATs in cancer inflammation and immunity: A leading role for STAT3. Nature Reviews. Cancer, 2009, 9(11): 798–809
CrossRef Google scholar
[83]
Lu Y, Miao L, Wang Y, Xu Z, Zhao Y, Shen Y, Xiang G, Huang L. Curcumin micelles remodel tumor microenvironment and enhance vaccine activity in an advanced melanoma model. Molecular Therapy, 2016, 24(2): 364–374
CrossRef Google scholar
[84]
Nagaraj S, Youn J I, Weber H, Iclozan C, Lu L, Cotter M J, Meyer C, Becerra C R, Fishman M, Antonia S, Anti-inflammatory triterpenoid blocks immune suppressive function of MDSCs and improves immune response in cancer. Clinical Cancer Research, 2010, 16(6): 1812–1823
CrossRef Google scholar
[85]
Zhao Y, Huo M, Xu Z, Wang Y, Huang L. Nanoparticle delivery of CDDO-Me remodels the tumor microenvironment and enhances vaccine therapy for melanoma. Biomaterials, 2015, 68: 54–66
CrossRef Google scholar

Acknowledgments

The Huang lab was supported by NIH grants CA149363, CA151652, CA149387 and DK100664. The Shi lab was supported by the National Natural Science Foundation of China (Grant No. 31671020).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(235 KB)

Accesses

Citations

Detail

Sections
Recommended

/