Large-scale industrial manufacturing of carbon nanotubes in a continuous inclined mobile-bed rotating reactor via the catalytic chemical vapor deposition process

Sophie L. Pirard, Sigrid Douven, Jean-Paul Pirard

PDF(331 KB)
PDF(331 KB)
Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 280-289. DOI: 10.1007/s11705-017-1635-1
VIEWS & COMMENTS
VIEWS & COMMENTS

Large-scale industrial manufacturing of carbon nanotubes in a continuous inclined mobile-bed rotating reactor via the catalytic chemical vapor deposition process

Author information +
History +

Abstract

This article reports the different steps of the design, development and validation of a process for continuous production of carbon nanotubes (CNTs) via catalytic chemical vapor deposition from the laboratory scale to the industrial production. This process is based on a continuous inclined mobile-bed rotating reactor and very active catalysts using methane or ethylene as carbon source. The importance of modeling taking into account the hydrodynamic, physicochemical and physical phenomena that occur during CNT production in the process analysis is emphasized. The impact of this invention on the environment and human health is taken into consideration too.

Graphical abstract

Keywords

carbon nanotubes / catalytic chemical vapor deposition / inclined rotating reactor / industrial process / scaling-up

Cite this article

Download citation ▾
Sophie L. Pirard, Sigrid Douven, Jean-Paul Pirard. Large-scale industrial manufacturing of carbon nanotubes in a continuous inclined mobile-bed rotating reactor via the catalytic chemical vapor deposition process. Front. Chem. Sci. Eng., 2017, 11(2): 280‒289 https://doi.org/10.1007/s11705-017-1635-1

References

[1]
Iijima S. Helical microtubules of graphitic carbon. Nature, 1991, 354(6348): 56–58
CrossRef Google scholar
[2]
Su D S. 20 Years of carbon nanotubes. In: Carbon Nanotubes. ChemSusChem, 2011, 4(7): 811–813 (Special Issue) 
CrossRef Google scholar
[3]
Monthioux M, Serp P, Flahaut E, Razafinimanana M, Laurent C, Peigney A, Bacsa W, Broto J M. Introduction to carbon nanotubes. In: Bhushan B, ed. Nanotechnology Handbook. 3rd edition, revised. Berlin: Springer-Verlag Heidelberg, 2010, 47–118
[4]
Monthioux M. Introduction to carbon nanotubes (Ch1). In: Monthioux M, . Meta-Nanotubes: Synthesis, Properties, and Applications. London: Wiley-Blackwell, 2012, 8–39
[5]
Monthioux M, Flahaut E, Laurent C, Escoffier W, Raquet B, Bacsa W, Puech P, Machado B, Serp P. Properties of carbon nanotubes. In: Bhushan B, Luo D, Schricker S R, Sigmund W, Zauscher S, eds. Handbook of Nanomaterials Properties. Berlin: Springer-Verlag Heidelberg, 2014, 1–49
[6]
Zhang Q, Huang J Q, Zhao M Q, Qian W Z, Wei F. Carbon nanotube mass production: Principles and processes. ChemSusChem, 2011, 4(7): 864–889
CrossRef Google scholar
[7]
Zhang Q, Huang J Q, Qian W Z, Zhang Y Y, Wei F. The road for nanomaterials industry: A review of carbon nanotube production, post-treatment, and bulk applications for composites and energy storage. Small, 2013, 9(8): 1237–1265
CrossRef Google scholar
[8]
Huang J Q, Zhang Q, Zhao M Q, Wei F. A review of the large-scale production of carbon nanotubes: The practice of nanoscale process engineering. Chinese Chemical Bulletin, 2012, 57(2-3): 157–166
CrossRef Google scholar
[9]
Ruoff R S, Lorents D C. Mechanical and thermal properties of carbon nanotubes. Carbon, 1995, 33(7): 925–930
CrossRef Google scholar
[10]
Berber S, Kwon Y K, Tománek D. Unusually high thermal conductivity of carbon nanotubes. Physical Letter Reviews, 2000, 84(20): 4613–4616
CrossRef Google scholar
[11]
Kukovecz A, Kónya Z, Nagaraju N, Willems I, Tamási A, Fonseca A, Nagy J B, Kiricsi I. Catalytic synthesis of carbon nanotubes over Co, Fe and Ni containing conventional and sol-gel silica-aluminas. Physical Chemistry Chemical Physics, 2000, 2(13): 3071–3076
CrossRef Google scholar
[12]
Willems I, Kónya Z, Colomer J F, Van Tendeloo G, Nagaraju N, Fonseca A, Nagy J B. Control of the outer diameter of thin carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chemical Physics Letters, 2000, 317(1-2): 71–76
CrossRef Google scholar
[13]
Willems I, Kónya Z, Fonseca A, Nagy J B. Heterogeneous catalytic production and mechanical resistance of nanotubes prepared on magnesium oxide-supported Co-based catalysts. Applied Catalysis A, 2002, 229: 229–233
CrossRef Google scholar
[14]
Piedigrosso P, Kónya Z, Colomer J F, Fonseca A, van Tendeloo G, Nagy J B. Production of differently shaped multi-wall carbon nanotubes using various cobalt supported catalysts. Physical Chemistry Chemical Physics, 2000, 2(1): 163–170.
CrossRef Google scholar
[15]
Pierard N, Fonseca A, Konya Z, Nagaraju N, Willems I, Tollis S, Bister G, Nagy J B, Popa P. Method for the production of functionalized short carbon nanotubes and functionalized short carbon nanotubes obtainable by said method. WO Patent, 2002/020402
[16]
Nagy J B, Nagaraju N, Willems I, Fonseca A. Catalyst supports and carbon nanotubes produced thereon. WO Patent, 2003/004410
[17]
Kathyayini H, Willems I, Fonseca A, Nagy J B, Nagaraju N. Catalytic materials based on aluminium hydroxide, for the large scale production of bundles of multi-walled (MWNT) carbon nanotubes. Catalysis Communications, 2006, 7(3): 140–147
CrossRef Google scholar
[18]
Pirard J P, Bossuot C, Kreit P. Method and installation for the manufacture of carbon nanotubes. WO Patent, 2004/069742
[19]
Pirard J P. Made in Belgium. Chemical and Engineering News, 2008, 86(12): 5
[20]
Bossuot C. Development of a reactor for the manufacture of carbon nanotubes by CCVD process. Dissertation for the Doctoral Degree. Belgium: University of Liege, 2004 (in French)
[21]
Pirard S L, Douven S, Pirard J P. Development of a reactor for the manufacture of carbon nanotubes by CCVD process. Chimie Nouvelle, 2015, 119: 1–12 (in French)
[22]
See C H, Harris A T. A review of carbon nanotube synthesis via fluidized-bed chemical vapor deposition. Industrial & Engineering Chemistry Research, 2007, 46(4): 997–1012
CrossRef Google scholar
[23]
MacKenzie K J, Dunens O M, Harris A T. An updated review of synthesis parameters and growth mechanisms for carbon nanotubes in fluidized beds. Industrial & Engineering Chemistry Research, 2010, 49(11): 5323–5338
CrossRef Google scholar
[24]
Couteau E, Hernádi K, Seo J W, Thiên-Nga L, Mikό C, Gaál R, Forrό L. CVD synthesis of high-purity multiwalled carbon nanotubes using CaCO3 catalyst support for large-scale production. Chemical Physics Letters, 2003, 378(1-2): 9–17 doi:10.1016/S0009-2614(03)01218-1
[25]
Seo J W, Couteau E, Umek P, Hernádi K, Marcoux P, Lukić B, Mik Có, Milas M, Gaál R, Forr Ló. Synthesis and manipulation of carbon nanotubes. New Journal of Physics, 2003, 5(120):1‒22
[26]
Magrez A, Seo J W, Mikó C, Hernádi,  K, Forró, L. Growth of carbon nanotubes with alkaline earth carbonate as support.  Journal of Physical Chemistry B, 2005, 109: 10087–10091
[27]
Magrez A, Seo J W, Kuznetsov V L, Forró L. Evidence of an equimolar C2H2-CO2 reaction in the synthesis of carbon nanotubes. Angewandte Chemie International Edition, 2007, 46(3): 441–444
CrossRef Google scholar
[28]
Rakov E G, Blinov S N, Ivanov I G, Rakova E V, Digurov N G. Continuous process for obtaining carbon nanofibers. Russian Journal of Applied Chemistry, 2004, 77(2): 187–191
CrossRef Google scholar
[29]
Rakov E G. The current status of carbon nanotube and carbon nanofiber production. Nanotechnologies in Russia, 2008, 3(9-10): 575–580
CrossRef Google scholar
[30]
Zavarukhin S G, Kuvshinov G G. Mathematical modeling of continuous production of carbon nanofibers from methane in a reactor with a moving bed of a nickel-containing catalyst. Theoretical Foundations of Chemical Engineering, 2006, 40(5): 519–525
CrossRef Google scholar
[31]
Zavarukhin S G, Kuvshinov G G. Mathematical modeling of the continuous process for synthesis of nanofibrous carbon in a moving catalyst bed reactor with recirculating gas flow. Chemical Engineering Journal, 2008, 137(3): 681–685
CrossRef Google scholar
[32]
Pirard S L, Pirard J P, Bossuot C. Modeling of a continuous rotary reactor for carbon nanotube synthesis by catalytic chemical vapor deposition. AIChE Journal. American Institute of Chemical Engineers, 2009, 55(3): 675–686
CrossRef Google scholar
[33]
Douven S, Pirard S L, Chan F Y, Pirard R, Heyen G, Pirard J P. Large scale synthesis of multi-walled carbon nanotubes in a continuous inclined rotating reactor by the catalytic chemical vapour deposition process using methane as carbon source. Chemical Engineering Journal, 2012, 188: 113–125
CrossRef Google scholar
[34]
Edwin E, Brustad M, Aaser K I, Rytter E, Mikkelsen O, Johansen J A. Carbon nano-fibre production. US Patent, 2010/0068123
[35]
Mohamed A R, Chai S P, Yeoh W M. An apparatus for production of carbon nanotubes. WO Patent, 2012/121584
[36]
Yeoh W M, Lee K T, Mohamed A R, Chai S P. Production of carbon nanotubes from chemical vapor deposition of methane in a continuous rotary reactor system. Chemical Engineering Communications, 2012, 199(5): 600–607
CrossRef Google scholar
[37]
Pinilla J L, Utrilla R, Lázaro M J, Suelves I, Moliner R, Palacios J M. A novel rotary reactor configuration for simultaneous production of hydrogen and carbon nanofibers. International Journal of Hydrogen Energy, 2009, 34(19): 8016–8022
CrossRef Google scholar
[38]
Pinilla J L, Utrilla R, Lázaro M J, Moliner R, Suelves I, García A B. Ni- and Fe-based catalysts for hydrogen and carbon nanofilament production by catalytic decomposition of methane in a rotary bed reactor. Fuel Processing Technology, 2011, 92(8): 1480–1488
CrossRef Google scholar
[39]
Chesnokov V V, Chichkan A S. Production of hydrogen by methane catalytic decomposition over Ni-Cu-Fe/Al2O3 catalyst. International Journal of Hydrogen Energy, 2009, 34(7): 2979–2985
CrossRef Google scholar
[40]
Torres D, Pinilla J L, Lázaro M J, Moliner R, Suelves I. Hydrogen and multiwall carbon nanotubes production by catalytic decomposition of methane: Thermogravimetric analysis and scaling-up of Fe-Mo catalysts. International Journal of Hydrogen Energy, 2014, 39(8): 3698–3709
CrossRef Google scholar
[41]
Bayer A G. Bayer offloads its carbon nanotubes and graphene patents to future carbon. Additives for Polymers, 2014, 5: 7
[42]
Villermaux J. Reaction Chemical Engineering. 2nd ed. Paris: Lavoisier, 1993 (in French)
[43]
Pirard S L, Douven S, Bossuot C, Heyen G, Pirard J P. A kinetic study of multi-walled carbon nanotube synthesis by catalytic chemical vapor deposition using a Fe-Co/Al2O3 catalyst. Carbon, 2007, 45(6): 1167–1175
CrossRef Google scholar
[44]
Pirard S L, Heyen G, Pirard J P. Quantitative study of catalytic activity and deactivation of Fe-Co/Al2O3 catalysts for multi-walled carbon nanotube synthesis by the CCVD process. Applied Catalysis A, 2010, 382(1): 1–9
CrossRef Google scholar
[45]
Douven S, Pirard S L, Heyen G, Toye D, Pirard J P. Kinetic study of double-walled carbon nanotube synthesis by catalytic chemical vapour deposition over an Fe-Mo/MgO catalyst using methane as the carbon source. Chemical Engineering Journal, 2011, 175: 396–407
CrossRef Google scholar
[46]
Pirard S L, Douven S, Pirard J P. Analysis of kinetic models of multi-walled CNT synthesis. Carbon, 2007, 45(15): 3050–3052
CrossRef Google scholar
[47]
Silvy R P, Liégeois F, Culot B, Lambert S. Preparation process of a supported catalyst for producing carbon nanotubes. WO Patent, 2006/079186
[48]
Pirard S L, Delafosse A, Toye D, Pirard J P. Modeling of a continuous rotary reactor for carbon nanotubes synthesis by catalytic chemical vapor deposition: Influence of heat exchanges and temperature profiles. Chemical Engineering Journal, 2013, 232: 488–494
CrossRef Google scholar
[49]
Gommes C, Blacher S, Bossuot C, Marchot P, Nagy J B, Pirard J P. Influence of operating conditions on the production rate of multi-walled carbon nanotubes in a CVD reactor. Carbon, 2004, 42: 1473–1482
CrossRef Google scholar
[50]
Pirard S L, Lumay G, Vandewalle N, Pirard J P. Motion of carbon nanotubes in a rotating drum: Dynamic angle of repose and bed behavior diagram. Chemical Engineering Journal, 2009, 146(1): 143–147
CrossRef Google scholar
[51]
Douven S. Industrial process for the manufacture of carbon nanotubes. Dissertation for the Doctoral Degree. Belgium: University of Liege, 2010 (in French)
[52]
Tran K Y, Heinrichs B, Pirard J P, Lambert S. Carbon nanotubes synthesis by ethylene chemical catalytic vapour deposition (CCVD) process on Fe, Co and Fe-Co/Al2O3 sol-gel catalysts. Applied Catalysis A, 2007, 318: 63–69
CrossRef Google scholar
[53]
Zilli D, Blacher S, Cukierman A L, Pirard J P, Gommes C J. Formation mechanism of Y-junctions in arrays of multi-walled carbon nanotubes. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2008, 327(1-3): 140–143
CrossRef Google scholar
[54]
Gommes C, Blacher S, Masenelli-Varlot K, Bossuot C, Mc Rae E, Nagy J B, Fonseca A, Pirard J P. Image analysis characterization of multi-walled carbon nanotubes. Carbon, 2003, 41(13): 2561–2572
CrossRef Google scholar
[55]
Gommes C, Blacher S, Dupont-Pavlovsky N, Bossuot C, Lamy M, Brasseur A, Marguilier D, Fonseca A, Nagy J B, Pirard J P. Comparison of different methods for characterizing multi-walled carbon nanotubes. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2004, 241: 155–164
CrossRef Google scholar
[56]
Gommes C, Noville F, Bossuot C, Pirard J P. Qualitative assessement of the purity of multi-walled carbon nanotube samples using krypton adsorption. Studies in Surface Science and Catalysis, 2007, 160: 265–271
CrossRef Google scholar
[57]
Zilli D, Bonelli P R, Gommes C J, Blacher S, Pirard J P, Cukierman A L. Krypton adsorption as a suitable tool for surface characterization of multiwalled CNTs. Carbon, 2011, 49(3): 980–985
CrossRef Google scholar
[58]
Pierard N, Fonseca A, Colomer J F, Bossuot C, Benoît J M, Van Tenderloo G, Pirard J P, Nagy J B. Ball milling effect on the structure of single-wall carbon nanotubes. Carbon, 2004, 42(8-9): 1691–1697
CrossRef Google scholar
[59]
Hwang J Y, Nish A, Doig J, Douven S, Chen C W, Chen L C, Nicholas R J. Polymer structure and solvent effects on the selective dispersion of single-walled carbon nanotubes. Journal of the American Chemical Society, 2008, 130(11): 3543–3553
CrossRef Google scholar
[60]
Haghgoo M, Yousefi A A, Zohouriaan Mehr M J, Léonard A F, Philippe M P, Compère P, Léonard A, Job N. Correlation between morphology and electrical conductivity of dried and carbonized multi-walled carbon nanotube/resorcinol-formaldehyde xerogel composites. Journal of Materials Science, 2015, 50(18): 6007–6020
CrossRef Google scholar
[61]
Aqil A, Vlad A, Piedboeuf M L, Aqil M, Job N, Melinte S, Detrembleur C, Jérôme C. A new design of organic radical batteries (ORBs): Carbon nanotube buckypaper electrode functionalized by electrografting. Chemical Communications, 2015, 51(45): 9301–9304
CrossRef Google scholar

Acknowledgments

J.P. Pirard offers thanks to the Belgian Walloon Region for research projects SYNATEC (n 14622), CATSYNAC (n 616517), PINSYNAC (n 516113), NANOCOMPO and RESSYNAC, and the European Union for the Research Training Network NANOCOMP (RTN1-1999-00013). The authors also acknowledge Nanocyl SA for permitting the publication of their research works (www.nanocyl.com). S.L. Pirard is grateful to the Belgian F.R.S.–FNRS for postdoctoral researcher funding.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(331 KB)

Accesses

Citations

Detail

Sections
Recommended

/