Catalytic oxidation of carbon monoxide, toluene, and ethyl acetate over the xPd/OMS-2 catalysts: Effect of Pd loading
Zhidan Fu, Lisha Liu, Yong Song, Qing Ye, Shuiyuan Cheng, Tianfang Kang, Hongxing Dai
Catalytic oxidation of carbon monoxide, toluene, and ethyl acetate over the xPd/OMS-2 catalysts: Effect of Pd loading
The Pd catalyst supported on cryptomelane-type manganese oxide octahedral molecular sieve (OMS-2) were prepared. The effect of Pd loading on the catalytic oxidation of carbon monoxide, toluene, and ethyl acetate over xPd/OMS-2 has been investigated. The results show that the Pd loading plays an important role on the physicochemical properties of the xPd/OMS-2 catalysts which outperform the Pd-free counterpart with the 0.5Pd/OMS-2 catalyst being the best. The temperature for 50% conversion was 25, 240 and 160 °C, and the temperature for 90% conversion was 55, 285 and 200 °C for oxidation of CO, toluene, and ethyl acetate, respectively. The low-temperature reducibility and high oxygen mobility of xPd/OMS-2 are the factors contributable to the excellent catalytic performance of 0.5Pd/OMS-2.
cryptomelane-type manganese oxide octahedral molecular sieve / oxygen mobility / reducibility / carbon monoxide oxidation / volatile organic compound combustion
[1] |
He C, Yu Y K, Shen Q, Chen J S, Qiao N L. Catalytic behavior and synergistic effect of nano-structured mesoporous CuO-MnOx-CeO2 catalysts for chlorobenzene destruction. Applied Surface Science, 2014, 297: 59–69
CrossRef
Google scholar
|
[2] |
An N H, Wu P, Li S Y, Jia M J, Zhang W X. Catalytic oxidation of formaldehyde over Pt/Fe2O3 catalysts prepared by different method. Applied Surface Science, 2013, 285: 805–809
CrossRef
Google scholar
|
[3] |
Shubert M M, Hackenberg S, van Veen A C, Muhler M, Plzak V, Behm R J. CO oxidation over supported gold catalysts — “Inert” and “Active” support materials and their role for the oxygen supply during reaction. Journal of Catalysis, 2001, 197(1): 113–122
CrossRef
Google scholar
|
[4] |
Torres R M S, Udea S A, Tanaka K, Haruta M. Selective oxidation of CO in hydrogen over gold supported on manganese oxides. Journal of Catalysis, 1997, 168(1): 125–127
CrossRef
Google scholar
|
[5] |
Gao T, Glerup M, Krumeich F, Nesper R, Fjellvag H, Norby P. Microstructures and spectroscopic properties of cryptomelane-type manganese dioxide nanofibers. Journal of Physical Chemistry C, 2008, 112(34): 13134–13140
CrossRef
Google scholar
|
[6] |
Shen Y F, Zerger R P, DeGuzman R N, Suib S L, McCurdy L, Potter D, O’Young C L. Manganese oxide octahedral molecular sieves: Preparation, characterization, and applications. Science, 1993, 260(5107): 511–515
CrossRef
Google scholar
|
[7] |
Domínguez M I, Navarro P, Romero-Sarria F, Frias D, Cruz S A, Delgado J J, Centeno M A, Montes M, Odriozola J A, Nanosci J. Fibrous, MnO2 nanoparticles with (2 × 2) tunnel structures. Catalytic activity in the total oxidation of volatile organic compounds. Nanotechnology, 2009, 9: 3837–3842
|
[8] |
Deng Y Q, Zhang T, Au C T, Yin S F. Liquid-phase catalytic oxidation of p-chlorotoluene to p-chlorobenzaldehyde over manganese oxide octahedral molecular sieves. Applied Catalysis A, General, 2013, 467: 117–123
CrossRef
Google scholar
|
[9] |
Zhang T, Deng Y Q, Zhou W F, Au C T, Yin S F. Selective oxidation of p-chlorotoluene to p-chlorobenzaldehyde with molecular oxygen over zirconium-doped manganese oxide materials. Chemical Engineering Journal, 2014, 240: 509–515
CrossRef
Google scholar
|
[10] |
Gac W. The influence of silver on the structural, redox and catalytic properties of the cryptomelane-type manganese oxides in the low-temperature CO oxidation reaction. Applied Catalysis B: Environmental, 2007, 75(1-2): 107–117
CrossRef
Google scholar
|
[11] |
Lyer A, Galindo H, Sithambaram S, King’ondu C, Chen C, Suib S L. Nanoscale manganese oxide octahedral molecular sieves (OMS-2) as efficient photocatalysts in 2-propanol oxidation. Applied Catalysis A, General, 2010, 375(2): 295–302
CrossRef
Google scholar
|
[12] |
Liu G L, Liao S J, Zhu D W, Hua Y M, Zhou W B. Innovative photocatalytic degradation of polyethylene film with boron-doped cryptomelane under UV and visible light irradiation. Chemical Engineering Journal, 2012, 213: 286–294
CrossRef
Google scholar
|
[13] |
Yang Y, Huang J, Zhang S Z, Wang S W, Deng S B, Wang B, Yu G. Catalytic removal of gaseous HCBz on Cu doped OMS: Effect of Cu location on catalytic performance. Applied Catalysis B: Environmental, 2014, 150-151: 167–178
CrossRef
Google scholar
|
[14] |
Schulz H, Stark W J, Maciejewski M, Pratsinis S E, Baiker A. Flame-made nanocrystalline ceria/zirconia doped with alumina or silica: Structural properties and enhanced oxygen exchange capacity. Journal of Materials Chemistry, 2003, 13(12): 2979–2984
CrossRef
Google scholar
|
[15] |
Liu J, Makwana V, Cai J, Shen X F, Suib S L, Aindow M. Effects of alkali metal and ammonium cation templates on nanofibrous cryptomelane-type manganese oxide octahedral molecular sieves (OMS-2). Journal of Physical Chemistry B, 2003, 107(35): 9185–9194
CrossRef
Google scholar
|
[16] |
Zou Z Q, Meng M, Zha Y Q. Surfactant-assisted synthesis, characterizations, and catalytic oxidation mechanisms of the mesoporous MnOx-CeO2 and Pd/MnOx-CeO2 catalysts used for CO and C3H8 oxidation. Journal of Physical Chemistry C, 2010, 114(1): 468–477
CrossRef
Google scholar
|
[17] |
Gentry S J, Hurst N W, Jones A. Study of the promoting influence of transition metals on the reduction of cupric oxide by temperature programmed reduction. Journal of the Chemical Society, Faraday Transactions, 1981, 1977: 603–619
|
[18] |
Lin R, Liu W P, Zhong Y J, Luo M F. Catalyst characterization and activity of Ag-Mn complex oxides. Applied Catalysis A, General, 2001, 220(1-2): 165–171
CrossRef
Google scholar
|
[19] |
Machocki A, Ioannides T, Stasinska B, Gac W, Avgouropoulos G, Delimaris D, Grzegorczyk W, Pasieczna S. Manganese-lanthanum oxides modified with silver for the catalytic combustion of methane. Journal of Catalysis, 2004, 227(2): 282–296
CrossRef
Google scholar
|
[20] |
Gandhe A R, Rebello J S, Figueiredo J L, Fernandes J B. Manganese oxide OMS-2 as an effective catalyst for total oxidation of ethyl acetate. Applied Catalysis B: Environmental, 2007, 72(1-2): 129–135
CrossRef
Google scholar
|
[21] |
Seo M H, Lim E J, Choi S M, Nam S H, Kim H J, Kim W B. Synthesis, characterization, and electro-catalytic properties of a polypyrrole-composited Pd/C catalyst. International Journal of Hydrogen Energy, 2011, 36(18): 11545–11553
CrossRef
Google scholar
|
[22] |
Peluso M A, Gambaro L A, Pronsato E, Gazzoli D, Thomas H J, Sambeth J E. Synthesis and catalytic activity of manganese dioxide (type OMS-2) for the abatement of oxygenated VOCs. Catalysis Today, 2008, 133-135: 487–492
CrossRef
Google scholar
|
[23] |
Wang F, Dai H X, Deng J G, Bai G M, Ji K M, Liu Y X. Manganese oxides with rod-, wire-, tube-, and flower-like morphologies: Highly effective catalysts for the removal of toluene. Environmental Science & Technology, 2012, 46(7): 4034–4041
CrossRef
Google scholar
|
[24] |
Tejuca L G, Bell A T, Fierro J L G, Pena M A. Surface behaviour of reduced LaCoO3 as studied by TPD of CO, CO2 and H2 probes and by XPS. Applied Surface Science, 1988, 31(3): 301–316
CrossRef
Google scholar
|
[25] |
Makwana V D, Garces L J, Liu J, Cai J, Son Y C, Steven L S. Selective oxidation of alcohols using octahedral molecular sieves: Influence of synthesis method and property-activity relations. Catalysis Today, 2003, 85(2-4): 225–233
CrossRef
Google scholar
|
[26] |
Yin Y G, Xu W Q, Suib S L, Oyoung C L. Lattice oxygen mobility and structural stability of Ni and Cu octahedral molecular sieves having the cryptomelane structure. Inorganic Chemistry, 1995, 34(16): 4187–4193
CrossRef
Google scholar
|
[27] |
Morales M, Barbero B, Cadus L. Total oxidation of ethanol and propane over Mn-Cu mixed oxide catalysts. Applied Catalysis B: Environmental, 2006, 67(3-4): 229–236
CrossRef
Google scholar
|
[28] |
Carabineiro A C, Bastos S S T, Orfao J J M, Pereira M F R, Delgado J J, Figueiredo J L. Carbon monoxide oxidation catalysed by exotemplated manganese oxides. Catalysis Letters, 2010, 134(3-4): 217–227
CrossRef
Google scholar
|
[29] |
Wang L C, Liu Q, Huang X S, Liu Y M, Cao Y, Fan K N. Gold nanoparticles supported on manganese oxides for low-temperature CO oxidation. Applied Catalysis B: Environmental, 2009, 88(1-2): 204–212
CrossRef
Google scholar
|
[30] |
Huang Q, Yan X K, Li B, Xu X L, Chen Y W, Zhu S M, Shen S B. Activity and stability of Pd/MMnOx (M= Co, Ni, Fe and Cu) supported on cordierite as CO oxidation catalysts. Journal of Industrial and Engineering Chemistry, 2013, 19(2): 438–443
CrossRef
Google scholar
|
[31] |
Jansson J. Low-temperature CO oxidation over Co3O4/Al2O3. Journal of Catalysis, 2000, 194(1): 55–60
CrossRef
Google scholar
|
[32] |
Ye Q, Lu H, Zhao J, Cheng S Y, Kang T F, Wang D, Dai H X. A comparative investigation on catalytic oxidation of CO, benzene, and toluene over birnessites derived from different routes. Applied Surface Science, 2014, 317: 892–901
CrossRef
Google scholar
|
[33] |
Bastos S S T, Carabineiro S A C, Orfao J J M, Pereira M F R, Delgado J J, Figueiredo J L. Total oxidation of ethyl acetate, ethanol and toluene catalyzed by exotemplated manganese and cerium oxides loaded with gold. Catalysis Today, 2012, 180(1): 148–154
CrossRef
Google scholar
|
[34] |
Jin L Y, Ma R H, Lin J J, Wang Y J, Luo M F. Bifunctional Pd/Cr2O3-ZrO2 catalyst for the oxidation of volatile organic compounds. Industrial & Engineering Chemistry Research, 2011, 50(18): 10878–10882
CrossRef
Google scholar
|
[35] |
Papaefthimiou P, Ioannides T, Verykios X E. VOC removal: Investigation of ethylacetate oxidation over supported Pt catalysts. Catalysis Today, 1999, 54(1): 81–92
CrossRef
Google scholar
|
[36] |
Minico S, Scire S, Crisafulli C, Maggiore R, Galvagno S. Catalytic combustion of volatile organic compounds on gold/iron oxide catalysts. Applied Catalysis B: Environmental, 2000, 28(3-4): 245–251
CrossRef
Google scholar
|
[37] |
Centeno M A, Paulis M, Montes M, Odriozola J A. Catalytic combustion of volatile organic compounds on Au/CeO2/Al2O3 and Au/Al2O3 catalysts. Applied Catalysis A, General, 2002, 234(1-2): 65–78
CrossRef
Google scholar
|
[38] |
WangR, Li J. Effects of precursor and sulfation on OMS-2 catalyst for oxidation of ethanol and acetaldehyde at low temperatures. Environmental Science & Technology, 2010, 44: 4282–4287
|
/
〈 | 〉 |