Molecular dynamics study of water diffusion in an amphiphilic block copolymer with large difference in the blocks’ glass transition temperatures

Yang Zhou , Phillip Choi

Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 440 -447.

PDF (367KB)
Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 440 -447. DOI: 10.1007/s11705-017-1626-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Molecular dynamics study of water diffusion in an amphiphilic block copolymer with large difference in the blocks’ glass transition temperatures

Author information +
History +
PDF (367KB)

Abstract

Isothermal-isobaric molecular dynamics simulation was used to study the diffusion mechanism of water in polyurethane-block-poly(N-isopropyl acrylamide) (PU-block-PNIPAm) with a hydrophobic PU/hydrophilic PNIPAm mass ratio of 1.4 to 1 at 298 K and 450 K. Here, the experimental glass transition temperature (Tg) of PU is 243 K while that of PNIPAm is 383 K. Different amounts of water up to 15 wt-% were added to PU-block-PNIPAm. We were able to reproduce the specific volumes and glass transition temperatures (250 K and 390 K) of PU-block-PNIPAm. The computed self-diffusion coefficient of water increased exponentially with increasing water concentration at both temperatures (i.e., following the free volume model of Fujita). It suggested that water diffusion in PU-block-PNIPAm depends only on its fractional free volume despite the free volume inhomogeneity. It is noted that at 298 K, PU is rubbery while PNIPAm is glassy. Regardless of temperature, radial distribution functions showed that water formed clusters with sizes in the range of 0.2–0.4 nm in PU-block-PNIPAm. At low water concentrations, more clusters were found in the PU domain but at high water concentrations, more in the PNIPAm domain. It is believed that water molecules diffuse as clusters rather than as individual molecules.

Graphical abstract

Keywords

molecular dynamics simulation / amphiphilic block copolymer / free volume / water diffusivity / fujita model

Cite this article

Download citation ▾
Yang Zhou, Phillip Choi. Molecular dynamics study of water diffusion in an amphiphilic block copolymer with large difference in the blocks’ glass transition temperatures. Front. Chem. Sci. Eng., 2017, 11(3): 440-447 DOI:10.1007/s11705-017-1626-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mathews A SNarine S. Poly[N-isopropyl acrylamide]-co-polyurethane copolymers for controlled release of urea. Journal of Polymer Science. Part A, Polymer Chemistry201048(15): 3236–3243

[2]

Seo YBrown J RHall L M. Effect of tapering on morphology and interfacial behavior of diblock copolymers from molecular dynamics simulations. Macromolecules201548(14): 4974–4982

[3]

Srinivas GDischer D EKlein M L. Self-assembly and properties of diblock copolymers by coarse-grain molecular dynamics. Nature Materials20043(9): 638–644

[4]

Fujita HKishimoto AMatsumoto K. Concentration and temperature dependence of diffusion coefficients for systems polymethyl acrylate and n-alkyl acetates. Transactions of the Faraday Society196056: 424–437

[5]

Fujita H. Free-volume model of diffusion in polymer solutions. Advances in Polymer Science19613: 1–47

[6]

Fujita H. Notes on free volume theories. Polymer Journal199123(12): 1499–1506

[7]

Fujita H. Comments on free volume theories for plymer-solvent systems. Chemical Engineering Science199348(17): 3037–3042

[8]

Williams M LLandel R FFerry J D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. Journal of the American Chemical Society195577(14): 3701–3707

[9]

Hess BKutzner Cvan der Spoel DLindahl E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation20084(3): 435–447

[10]

van der Spoel DLindahl EHess BGroenhof GMark A EBerendsen H J C. GROMACS: Fast, flexible, and free. Journal of Computational Chemistry200526(16): 1701–1718

[11]

Lindahl EHess Bvan der Spoel D. GROMACS 3.0: A package for molecular simulation and trajectory analysis. Journal of Molecular Modeling20017(8): 306–317

[12]

Berendsen H Jvan der Spoel Dvan Drunen R. GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications199591(1-3): 43–56

[13]

Ostenbrink CVilla AMark A Evan Gunsteren W F. A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6. Journal of Computational Chemistry200425(13): 1656–1676

[14]

Daura XMark A Evan Gunsteren W F. Parametrization of aliphatic CHn united atoms of GROMOS96 force field. Journal of Computational Chemistry199819(5): 535–547

[15]

Berendsen H JPostma J Pvan Gunsteren W FHermans J. Interaction models for water in relation to protein hydration. Intermolecular Forces1981, 331–342

[16]

Theodorou D NSuter U W. Detailed molecular structure of a vinyl polymer glass. Macromolecules198518(7): 1467–1478

[17]

Hoover W G. Canonical dynamics: Equilibrium phase-space distributions. Physical Review A.198531(3): 1695–1697

[18]

Parrinello MRahman A. Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics198152(12): 7182–7190

[19]

Zhang Q GLiu Q LChen YWu J YZhu A M. Microstructure dependent diffusion of water-ethanol in swollen poly (vinyl alcohol): A molecular dynamics simulation study. Chemical Engineering Science200964(2): 334–340

[20]

Bondi A. van der Waals volumes and radii. Journal of Physical Chemistry196468(3): 441–451

[21]

Raghu A VGadaginamath G SJawalkar S SHalligudi S BAminabhavi T M. Synthesis, characterization, and molecular modeling studies of novel polyurethanes based on 2,2′-[ethane-1,2-diylbis (nitrilomethylylidene)] diphenol and 2,2′-[hexane-1,6-diylbis (nitrilomethylylidene)] diphenol hard segments. Journal of Polymer Science. Part A, Polymer Chemistry200644(20): 6032–6046

[22]

Zhou DBayati FChoi P. On the weak dependence of water diffusivity on the degree of hydrophobicity of acetylated hydroxypropyl xylan. Carbohydrate Polymers201398(1): 644–649

[23]

Schild H G. Poly(N-isopropylacrylamide): Experiment, theory and application. Progress in Polymer Science199217(2): 163–249

[24]

Harmandaris VMavrantzas VTheodorou DKröger MRamírez JÖttinger H CVlassopoulos D. Crossover from the rouse to the entangled polymer melt regime: Signals from long, detailed atomistic molecular dynamics simulations, supported by rheological experiments. Macromolecules200336(4): 1376–1387

[25]

Cohen M HTurnbull D. Molecular transport in liquids and glasses. Journal of Chemical Physics195931(5): 1164–1169

[26]

Sreenivasan K. Diffusion of water and alcohol in chemically modified polyurethane. Polymer International199330(3): 363–365

[27]

Pulat MAkdoğan A. The diffusion and bulk properties of polyurethane (PU)-based hydrophilic and hydrophobic membranes. Journal of Applied Polymer Science200285: 193–198

[28]

McNeill M EGraham N B. Properties controlling the diffusion and release of water-soluble solutes from poly(ethylene oxide) hydrogels 1. Polymer composition. Journal of Biomaterials Science. Polymer Edition19934(3): 305–322

[29]

Costa LStorti G. Self-diffusion of small molecules into rubbery polymers: A lattice free-volume theory. Journal of Polymer Science. Part B, Polymer Physics201048(5): 529–540

[30]

Scholfield M RFord M Cvan der Zanden C MBillman M MHo P SRappé A K. Force field model of periodic trends in biomolecular halogen bonds. Journal of Physical Chemistry B2015119(29): 9140–9149

[31]

Tamai YTanaka HNakanishi K. Molecular dynamics study of water in hydrogels. Molecular Simulation199616(4-6): 359–374

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (367KB)

2830

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/