Metal salts with highly electronegative cations as efficient catalysts for the liquid-phase nitration of benzene by NO2 to nitrobenzene

Shenghui Zhou , Kuiyi You , Zhengming Yi , Pingle Liu , Hean Luo

Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 205 -210.

PDF (291KB)
Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 205 -210. DOI: 10.1007/s11705-017-1625-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Metal salts with highly electronegative cations as efficient catalysts for the liquid-phase nitration of benzene by NO2 to nitrobenzene

Author information +
History +
PDF (291KB)

Abstract

Metal salts with highly electronegative cations have been used to effectively catalyze the liquid-phase nitration of benzene by NO2 to nitrobenzene under solvent-free conditions. Several salts including FeCl3, ZrCl4, AlCl3, CuCl2, NiCl2, ZnCl2, MnCl2, Fe(NO3)3·9H2O, Bi(NO3)3·5H2O, Zr(NO3)4·5H2O, Cu(NO3)2·6H2O, Ni(NO3)2·6H2O, Zn(NO3)2·6H2O, Fe2(SO4)3, and CuSO4 were examined and anhydrous FeCl3 exhibited the best catalytic performance under the optimal reaction conditions. The benzene conversion and selectivity to nitrobenzene were both over 99%. In addition, it was determined that the metal counterion and the presence of water hydrates in the salt affects the catalytic activity. This method is simple and efficient and may have potential industrial application prospects.

Graphical abstract

Keywords

metal salts / electronegativity / nitrobenzene / NO2 / catalytic nitration

Cite this article

Download citation ▾
Shenghui Zhou, Kuiyi You, Zhengming Yi, Pingle Liu, Hean Luo. Metal salts with highly electronegative cations as efficient catalysts for the liquid-phase nitration of benzene by NO2 to nitrobenzene. Front. Chem. Sci. Eng., 2017, 11(2): 205-210 DOI:10.1007/s11705-017-1625-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Schofield K. Aromatic Nitration.Cambridge: Cambridge University Press, 1980

[2]

Ma XLi BLv CLu MWu JLiang L. An efficient and eco-friendly MoO3-SiO2 solid acid catalyst for electrophilic aromatic nitration with N2O5. Catalysis Letters2011141(12): 1814–1820

[3]

Olah G AMalhotra RNarang S C. Nitration: Methods and Mechanisms.New York: VCH, 1989

[4]

Smith KMusson ADe Boos G A. A novel method for the nitration of simple aromatic compounds. Journal of Organic Chemistry199863(23): 8448–8454

[5]

Kalbasi R JGhiaci MMassah A R. Highly selective vapor phase nitration of toluene to 4-nitro toluene using modified and unmodified H3PO4/ZSM-5. Applied Catalysis A, General2009353(1): 1–8

[6]

Kulal A BDongare M KUmbarkar S B. Sol-gel synthesised WO3 nanoparticles supported on mesoporous silica for liquid phase nitration of aromatics. Applied Catalysis B: Environmental2016182: 142–152

[7]

Mao WMa HWang B. A clean method for solvent-free nitration of toluene over sulfated titania promoted by ceria catalysts. Journal of Hazardous Materials2009167(1): 707–712

[8]

Bernasconi SPirngruber G DPrins R. Influence of the properties of zeolite BEA on its performance in the nitration of toluene and nitrotoluene. Journal of Catalysis2004224(2): 297–303

[9]

Zhao XHan YSun XWang Y. Structure and catalytic performance of H3PW12O40/SiO2 prepared by several methods. Chinese Journal of Catalysis200728(1): 91–95

[10]

Parida K MPattnayak P K. Sulphated zirconia: An efficient paraselective catalyst for mononitration of halobenzenes. Catalysis Letters199747(3-4): 255–257

[11]

Yadav G DNair J J. Selectivity engineering in the nitration of chlorobenzene using eclectically engineered sulfated zirconia and carbon molecular sieve catalysts. Catalysis Letters199962(1): 49–52

[12]

Sato HNagai KYoshioka HNagaokab Y. Vapor phase nitration of benzene over solid acid catalysts IV. Nitration with nitric acid (3); supported sulfuric acid catalyst with co-feeding of a trace amount of sulfuric acid. Applied Catalysis A, General1999180(1-2): 359–366

[13]

Gong SLiu LCui QDing J. Liquid phase nitration of benzene over supported ammonium salt of 12-molybdophosphoric acid catalysts prepared by sol-gel method. Journal of Hazardous Materials2010178(1-3): 404–408

[14]

Olah G AKrishnamurthy V VNarang S C. Aromatic substitution. 50. Mercury (II)-promoted azeotropic nitration of aromatics over Nafion-H solid superacidic catalyst. Journal of Organic Chemistry198247(3): 596–598

[15]

Shi MCui S C. Electrophilic aromatic nitration using perfluorinated rare earth metal salts in fluorous phase. Chemical Communications2002, (9): 994–995

[16]

You K YDeng R JJian JLiu P LAi Q HLuo H A H. 3PW12O40 synergized with MCM-41 for the catalytic nitration of benzene with NO2 to nitrobenzene. RSC Advances20155(89): 73083–73090

[17]

Ma X MLi B DLu MLv C X. Selective nitration of aromatic compounds catalyzed by Hβ zeolite using N2O5. Chinese Chemical Letters201223(7): 809–812

[18]

Ma X MLi B DLu MLv C X. Rare earth metal triflates catalyzed electrophilic nitration using N2O5. Chinese Chemical Letters201223(1): 73–76

[19]

Samajdar SBecker F FBanik B K. Surface-mediated highly efficient regioselective nitration of aromatic compounds by bismuth nitrate. Tetrahedron Letters200041(42): 8017–8020

[20]

Iranpoor NFirouzabadi HHeydari RShiri M. Nitration of aromatic compounds by Zn(NO3)2·2N2O4 and its charcoal-supported system. Synthetic Communications200535(2): 263–270

[21]

Pervez HOnyiriuka S ORees LRooney J RSuckling C J. Selective functionalization: Part 10. The nitration of phenols by pyridine derivatives carrying a transferable nitro group. Tetrahedron198844(14): 4555–4568

[22]

Cheng GDuan XQi XLu C. Nitration of aromatic compounds with NO2/air catalyzed by sulfonic acid-functionalized ionic liquids. Catalysis Communications200810(2): 201–204

[23]

Smith KAlmeera SPetersa C. Regioselective mononitration of aromatic compounds by zeolite/dinitrogen tetroxide/air in a solvent-free system. Chemical Communications2001, (24): 2748–2749

[24]

Bosch EKochi K. Thermal and photochemical nitration of aromatic hydrocarbons with nitrogen dioxide. Journal of Organic Chemistry199459(12): 3314–3325

[25]

Suzuki HYonezawa SNonoyama NMori T. Iron(III)-catalysed nitration of non-activated and moderately activated arenes with nitrogen dioxide–molecular oxygen under neutral conditions. Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry1996, (19): 2385–2389

[26]

Tanaka K IOzaki A. Acid-base properties and catalytic activity of solid surfaces. Journal of Catalysis19678(1): 1–7

[27]

Shiri MZolfigol M AKruger H GTanbakouchian Z. Advances in the application of N2O4/NO2 in organic reactions. Tetrahedron201066(47): 9077–9106

[28]

Tang BWei SPeng X. Acid-catalyzed regioselective nitration of o-xylene to 4-nitro-o-xylene with nitrogen dioxide: Brønsted acid versus Lewis acid. Synthetic Communications201414(44): 2057–2065

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (291KB)

3567

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/