Metal salts with highly electronegative cations as efficient catalysts for the liquid-phase nitration of benzene by NO2 to nitrobenzene

Shenghui Zhou, Kuiyi You, Zhengming Yi, Pingle Liu, Hean Luo

PDF(291 KB)
PDF(291 KB)
Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (2) : 205-210. DOI: 10.1007/s11705-017-1625-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Metal salts with highly electronegative cations as efficient catalysts for the liquid-phase nitration of benzene by NO2 to nitrobenzene

Author information +
History +

Abstract

Metal salts with highly electronegative cations have been used to effectively catalyze the liquid-phase nitration of benzene by NO2 to nitrobenzene under solvent-free conditions. Several salts including FeCl3, ZrCl4, AlCl3, CuCl2, NiCl2, ZnCl2, MnCl2, Fe(NO3)3·9H2O, Bi(NO3)3·5H2O, Zr(NO3)4·5H2O, Cu(NO3)2·6H2O, Ni(NO3)2·6H2O, Zn(NO3)2·6H2O, Fe2(SO4)3, and CuSO4 were examined and anhydrous FeCl3 exhibited the best catalytic performance under the optimal reaction conditions. The benzene conversion and selectivity to nitrobenzene were both over 99%. In addition, it was determined that the metal counterion and the presence of water hydrates in the salt affects the catalytic activity. This method is simple and efficient and may have potential industrial application prospects.

Graphical abstract

Keywords

metal salts / electronegativity / nitrobenzene / NO2 / catalytic nitration

Cite this article

Download citation ▾
Shenghui Zhou, Kuiyi You, Zhengming Yi, Pingle Liu, Hean Luo. Metal salts with highly electronegative cations as efficient catalysts for the liquid-phase nitration of benzene by NO2 to nitrobenzene. Front. Chem. Sci. Eng., 2017, 11(2): 205‒210 https://doi.org/10.1007/s11705-017-1625-3

References

[1]
Schofield K. Aromatic Nitration.Cambridge: Cambridge University Press, 1980
[2]
Ma X, Li B, Lv C, Lu M, Wu J, Liang L. An efficient and eco-friendly MoO3-SiO2 solid acid catalyst for electrophilic aromatic nitration with N2O5. Catalysis Letters, 2011, 141(12): 1814–1820
CrossRef Google scholar
[3]
Olah G A, Malhotra R, Narang S C. Nitration: Methods and Mechanisms.New York: VCH, 1989
[4]
Smith K, Musson A, De Boos G A. A novel method for the nitration of simple aromatic compounds. Journal of Organic Chemistry, 1998, 63(23): 8448–8454
CrossRef Google scholar
[5]
Kalbasi R J, Ghiaci M, Massah A R. Highly selective vapor phase nitration of toluene to 4-nitro toluene using modified and unmodified H3PO4/ZSM-5. Applied Catalysis A, General, 2009, 353(1): 1–8
CrossRef Google scholar
[6]
Kulal A B, Dongare M K, Umbarkar S B. Sol-gel synthesised WO3 nanoparticles supported on mesoporous silica for liquid phase nitration of aromatics. Applied Catalysis B: Environmental, 2016, 182: 142–152
CrossRef Google scholar
[7]
Mao W, Ma H, Wang B. A clean method for solvent-free nitration of toluene over sulfated titania promoted by ceria catalysts. Journal of Hazardous Materials, 2009, 167(1): 707–712
CrossRef Google scholar
[8]
Bernasconi S, Pirngruber G D, Prins R. Influence of the properties of zeolite BEA on its performance in the nitration of toluene and nitrotoluene. Journal of Catalysis, 2004, 224(2): 297–303
CrossRef Google scholar
[9]
Zhao X, Han Y, Sun X, Wang Y. Structure and catalytic performance of H3PW12O40/SiO2 prepared by several methods. Chinese Journal of Catalysis, 2007, 28(1): 91–95
CrossRef Google scholar
[10]
Parida K M, Pattnayak P K. Sulphated zirconia: An efficient paraselective catalyst for mononitration of halobenzenes. Catalysis Letters, 1997, 47(3-4): 255–257
CrossRef Google scholar
[11]
Yadav G D, Nair J J. Selectivity engineering in the nitration of chlorobenzene using eclectically engineered sulfated zirconia and carbon molecular sieve catalysts. Catalysis Letters, 1999, 62(1): 49–52
CrossRef Google scholar
[12]
Sato H, Nagai K, Yoshioka H, Nagaokab Y. Vapor phase nitration of benzene over solid acid catalysts IV. Nitration with nitric acid (3); supported sulfuric acid catalyst with co-feeding of a trace amount of sulfuric acid. Applied Catalysis A, General, 1999, 180(1-2): 359–366
CrossRef Google scholar
[13]
Gong S, Liu L, Cui Q, Ding J. Liquid phase nitration of benzene over supported ammonium salt of 12-molybdophosphoric acid catalysts prepared by sol-gel method. Journal of Hazardous Materials, 2010, 178(1-3): 404–408
CrossRef Google scholar
[14]
Olah G A, Krishnamurthy V V, Narang S C. Aromatic substitution. 50. Mercury (II)-promoted azeotropic nitration of aromatics over Nafion-H solid superacidic catalyst. Journal of Organic Chemistry, 1982, 47(3): 596–598
CrossRef Google scholar
[15]
Shi M, Cui S C. Electrophilic aromatic nitration using perfluorinated rare earth metal salts in fluorous phase. Chemical Communications, 2002, (9): 994–995
CrossRef Google scholar
[16]
You K Y, Deng R J, Jian J, Liu P L, Ai Q H, Luo H A H. 3PW12O40 synergized with MCM-41 for the catalytic nitration of benzene with NO2 to nitrobenzene. RSC Advances, 2015, 5(89): 73083–73090
CrossRef Google scholar
[17]
Ma X M, Li B D, Lu M, Lv C X. Selective nitration of aromatic compounds catalyzed by Hβ zeolite using N2O5. Chinese Chemical Letters, 2012, 23(7): 809–812
CrossRef Google scholar
[18]
Ma X M, Li B D, Lu M, Lv C X. Rare earth metal triflates catalyzed electrophilic nitration using N2O5. Chinese Chemical Letters, 2012, 23(1): 73–76
CrossRef Google scholar
[19]
Samajdar S, Becker F F, Banik B K. Surface-mediated highly efficient regioselective nitration of aromatic compounds by bismuth nitrate. Tetrahedron Letters, 2000, 41(42): 8017–8020
CrossRef Google scholar
[20]
Iranpoor N, Firouzabadi H, Heydari R, Shiri M. Nitration of aromatic compounds by Zn(NO3)2·2N2O4 and its charcoal-supported system. Synthetic Communications, 2005, 35(2): 263–270
CrossRef Google scholar
[21]
Pervez H, Onyiriuka S O, Rees L, Rooney J R, Suckling C J. Selective functionalization: Part 10. The nitration of phenols by pyridine derivatives carrying a transferable nitro group. Tetrahedron, 1988, 44(14): 4555–4568
CrossRef Google scholar
[22]
Cheng G, Duan X, Qi X, Lu C. Nitration of aromatic compounds with NO2/air catalyzed by sulfonic acid-functionalized ionic liquids. Catalysis Communications, 2008, 10(2): 201–204
CrossRef Google scholar
[23]
Smith K, Almeera S, Petersa C. Regioselective mononitration of aromatic compounds by zeolite/dinitrogen tetroxide/air in a solvent-free system. Chemical Communications, 2001, (24): 2748–2749
CrossRef Google scholar
[24]
Bosch E, Kochi K. Thermal and photochemical nitration of aromatic hydrocarbons with nitrogen dioxide. Journal of Organic Chemistry, 1994, 59(12): 3314–3325
CrossRef Google scholar
[25]
Suzuki H, Yonezawa S, Nonoyama N, Mori T. Iron(III)-catalysed nitration of non-activated and moderately activated arenes with nitrogen dioxide–molecular oxygen under neutral conditions. Journal of the Chemical Society, Perkin Transactions 1: Organic and Bio-Organic Chemistry, 1996, (19): 2385–2389
CrossRef Google scholar
[26]
Tanaka K I, Ozaki A. Acid-base properties and catalytic activity of solid surfaces. Journal of Catalysis, 1967, 8(1): 1–7
CrossRef Google scholar
[27]
Shiri M, Zolfigol M A, Kruger H G, Tanbakouchian Z. Advances in the application of N2O4/NO2 in organic reactions. Tetrahedron, 2010, 66(47): 9077–9106
CrossRef Google scholar
[28]
Tang B, Wei S, Peng X. Acid-catalyzed regioselective nitration of o-xylene to 4-nitro-o-xylene with nitrogen dioxide: Brønsted acid versus Lewis acid. Synthetic Communications, 2014, 14(44): 2057–2065
CrossRef Google scholar

Acknowledgments

We gratefully acknowledge the financial support for this work by the National Natural Science Foundation of China (Grant Nos. 21676226 and 21306158), the Collaborative Innovation Center of New Chemical Technologies for Environmental Benignity and Efficient Resource Utilization, and the Project of Technological Innovation & Entrepreneurship Platform for Hunan Youth (2014).

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(291 KB)

Accesses

Citations

Detail

Sections
Recommended

/