Genome reprogramming for synthetic biology
Kylie Standage-Beier, Xiao Wang
Genome reprogramming for synthetic biology
The ability to go from a digitized DNA sequence to a predictable biological function is central to synthetic biology. Genome engineering tools facilitate rewriting and implementation of engineered DNA sequences. Recent development of new programmable tools to reengineer genomes has spurred myriad advances in synthetic biology. Tools such as clustered regularly interspace short palindromic repeats enable RNA-guided rational redesign of organisms and implementation of synthetic gene systems. New directed evolution methods generate organisms with radically restructured genomes. These restructured organisms have useful new phenotypes for biotechnology, such as bacteriophage resistance and increased genetic stability. Advanced DNA synthesis and assembly methods have also enabled the construction of fully synthetic organisms, such as J. Craig Venter Institute (JCVI)-syn 3.0. Here we summarize the recent advances in programmable genome engineering tools.
CRISPR / genome engineering / synthetic biology / rational design
[1] |
Faucon P C, Pardee K, Kumar R M, Li H, Loh Y H, Wang X. Gene networks of fully connected triads with complete auto-activation enable multistability and stepwise stochastic transitions. PLoS One, 2014, 9(7): e102873
|
[2] |
Wu F, Menn D J, Wang X. Quorum-sensing crosstalk-driven synthetic circuits: From unimodality to trimodality. Chemistry & Biology, 2014, 21(12): 1629–1638
|
[3] |
Wang L Z, Wu F, Flores K, Lai Y C, Wang X. Build to understand: Synthetic approaches to biology. Integrative Biology, 2016, 8(4): 394–408
|
[4] |
Brophy J A N, Voigt C A. Principles of genetic circuit design. Nature Methods, 2014, 11(5): 508–520
|
[5] |
Gardner T S, Cantor C R, Collins J J. Construction of a genetic toggle switch in Escherichia coli. Nature, 2000, 403(6767): 339–342
|
[6] |
Litcofsky K D, Afeyan R B, Krom R J, Khalil A S, Collins J J. Iterative plug-and-play methodology for constructing and modifying synthetic gene networks. Nature Methods, 2012, 9(11): 1077–1080
|
[7] |
Ellis T, Wang X, Collins J J. Diversity-based, model-guided construction of synthetic gene networks with predicted functions. Nature Biotechnology, 2009, 27(5): 465–471
|
[8] |
Wu M, Su R Q, Li X, Ellis T, Lai Y C, Wang X. Engineering of regulated stochastic cell fate determination. Proceedings of the National Academy of Sciences, 2013, 201305423
|
[9] |
Hutchison C A, Chuang R Y, Noskov V N, Assad-Garcia N, Deerinck T J, Ellisman M H, Gill J, Kannan K, Karas B J, Ma L, et al. Design and synthesis of a minimal bacterial genome. Science, 2016, 351(6280): aad6253
|
[10] |
Mojica F J M, Diez-Villasenor C, Garcia-Martinez J, Almendros C. Short motif sequences determine the targets of the prokaryotic CRISPR defence system. Microbiology, 2009, 155(3): 733–740
|
[11] |
Brouns S J J, Jore M M, Lundgren M, Westra E R, Slijkhuis R J H, Snijders A P L, Dickman M J, Makarova K S, Koonin E V, van der Oost J. Small CRISPR RNAs guide antiviral defense in prokaryotes. Science, 2008, 321(5891): 960–964
|
[12] |
Marraffini L A. CRISPR-Cas immunity in prokaryotes. Nature, 2015, 526(7571): 55–61
|
[13] |
Marraffini L A, Sontheimer E J. CRISPR interference limits horizontal gene transfer in staphylococci by targeting DNA. Science, 2008, 322(5909): 1843–1845
|
[14] |
Makarova K S, Haft D H, Barrangou R, Brouns S J J, Charpentier E, Horvath P, Moineau S, Mojica F J M, Wolf Y I, Yakunin A F, et al. Evolution and classification of the CRISPR-Cas systems. Nature Reviews. Microbiology, 2011, 9(6): 467–477
|
[15] |
Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna J A, Charpentier E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science, 2012, 337(6096): 816–821
|
[16] |
Cong L, Ran F A, Cox D, Lin S, Barretto R, Habib N, Hsu P D, Wu X, Jiang W, Marraffini L A, et al. Multiplex genome engineering using CRISPR/Cas systems. Science, 2013, 339(6121): 819–823
|
[17] |
Mali P, Yang L, Esvelt K M, Aach J, Guell M, DiCarlo J E, Norville J E, Church G M. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121): 823–826
|
[18] |
Fu Y, Foden J A, Khayter C, Maeder M L, Reyon D, Joung J K, Sander J D. High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nature Biotechnology, 2013, 31(9): 822–826
|
[19] |
Ran F A, Hsu P D, Lin C Y, Gootenberg J S, Konermann S, Trevino A E, Scott D A, Inoue A, Matoba S, Zhang Y, et al. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell, 2013, 155(2): 479–480
|
[20] |
Tsai S Q, Wyvekens N, Khayter C, Foden J A, Thapar V, Reyon D, Goodwin M J, Aryee M J, Joung J K. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nature Biotechnology, 2014, 32(6): 569–576
|
[21] |
Guilinger J P, Thompson D B, Liu D R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nature Biotechnology, 2014, 32(6): 577–582
|
[22] |
Fu Y, Sander J D, Reyon D, Cascio V M, Joung J K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nature Biotechnology, 2014, 32(3): 279–284
|
[23] |
Kiani S, Chavez A, Tuttle M, Hall R N, Chari R, Ter-Ovanesyan D, Qian J, Pruitt B W, Beal J, Vora S, et al. Cas9 gRNA engineering for genome editing, activation and repression. Nature Methods, 2015, 12(11): 1051–1054
|
[24] |
Kiani S, Beal J, Ebrahimkhani M R, Huh J, Hall R N, Xie Z, Li Y, Weiss R. CRISPR transcriptional repression devices and layered circuits in mammalian cells. Nature Methods, 2014, 11(7): 723–726
|
[25] |
Slaymaker I M, Gao L, Zetsche B, Scott D A, Yan W X, Zhang F. Rationally engineered Cas9 nucleases with improved specificity. Science, 2015, 351(6268): 84–88
|
[26] |
Kleinstiver B P, Pattanayak V, Prew M S, Tsai S Q, Nguyen N T, Zheng Z, Joung J K. High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects. Nature, 2016, 529(7587): 490–495
|
[27] |
Kleinstiver B P, Prew M S, Tsai S Q, Topkar V V, Nguyen N T, Zheng Z, Gonzales A P W, Li Z, Peterson R T, Yeh J R J, et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature, 2015, 523(7561): 481–485
|
[28] |
Kleinstiver B P, Prew M S, Tsai S Q, Nguyen N T, Topkar V V, Zheng Z, Joung J K. Broadening the targeting range of Staphylococcus aureus CRISPR-Cas9 by modifying PAM recognition. Nature Biotechnology, 2015, 33(12): 1293–1298
|
[29] |
He X, Tan C, Wang F, Wang Y, Zhou R, Cui D, You W, Zhao H, Ren J, Feng B. Knock-in of large reporter genes in human cells via CRISPR/Cas9-induced homology-dependent and independent DNA repair. Nucleic Acids Research, 2016, 44(9): e85
|
[30] |
Jiang W, Bikard D, Cox D, Zhang F, Marraffini L A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nature Biotechnology, 2013, 31(3): 233–239
|
[31] |
Kuhlman T E, Cox E C. Site-specific chromosomal integration of large synthetic constructs. Nucleic Acids Research, 2010, 38(6): e92
|
[32] |
Bassalo M C, Garst A D, Halweg-Edwards A L, Grau W C, Domaille D W, Mutalik V K, Arkin A P, Gill R T. Rapid and efficient one-step metabolic pathway integration in E. coli. ACS Synthetic Biology, 2016, 5(7): 561–568
|
[33] |
Standage-Beier K, Zhang Q, Wang X. Targeted large-scale deletion of bacterial genomes using CRISPR-nickases. ACS Synthetic Biology, 2015, 4(11): 1217–1225
|
[34] |
Li Q, Chen J, Minton N P, Zhang Y, Wen Z, Liu J, Yang H, Zeng Z, Ren X, Yang J, et al. CRISPR-based genome editing and expression control systems in Clostridium acetobutylicum and Clostridium beijerinckii. Biotechnology Journal, 2016, 11(7): 961–972
|
[35] |
Wang Y, Zhang Z T, Seo S O, Choi K, Lu T, Jin Y S, Blaschek H P. Markerless chromosomal gene deletion in Clostridium beijerinckii using CRISPR/Cas9 system. Journal of Biotechnology, 2015, 200: 1–5
|
[36] |
Liao C, Seo S O, Celik V, Liu H, Kong W, Wang Y, Blaschek H, Jin Y S, Lu T. Integrated, systems metabolic picture of acetone-butanol-ethanol fermentation by Clostridium acetobutylicum. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(27): 8505–8510
|
[37] |
Mougiakos I, Bosma E F, de Vos W M, van Kranenburg R, van der Oost J. Next generation prokaryotic engineering: The CRISPR-Cas toolkit. Trends in Biotechnology, 2016, 34(7): 575–587
|
[38] |
Choi K R, Lee S Y. CRISPR technologies for bacterial systems: Current achievements and future directions. Biotechnology Advances, 2016, 34(7): 1180–1209
|
[39] |
Jiang W, Marraffini L A. CRISPR-Cas: New tools for genetic manipulations from bacterial immunity systems. Annual Review of Microbiology, 2015, 69(1): 209–228
|
[40] |
Doyon Y, McCammon J M, Miller J C, Faraji F, Ngo C, Katibah G E, Amora R, Hocking T D, Zhang L, Rebar E J, et al. Heritable targeted gene disruption in zebrafish using designed zinc-finger nucleases. Nature Biotechnology, 2008, 26(6): 702–708
|
[41] |
DiCarlo J E, Norville J E, Mali P, Rios X, Aach J, Church G M. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Research, 2013, 41(7): 4336–4343
|
[42] |
Bao Z, Xiao H, Liang J, Zhang L, Xiong X, Sun N, Si T, Zhao H. Homology-integrated CRISPR-Cas (HI-CRISPR) system for one-step multigene disruption in Saccharomyces cerevisiae. ACS Synthetic Biology, 2015, 4(5): 585–594
|
[43] |
Hao H, Wang X, Jia H, Yu M, Zhang X, Tang H, Zhang L. Large fragment deletion using a CRISPR/Cas9 system in Saccharomyces cerevisiae. Analytical Biochemistry, 2016, 509: 118–123
|
[44] |
Jakočiūnas T, Rajkumar A S, Zhang J, Arsovska D, Rodriguez A, Jendresen C B, Skjødt M L, Nielsen A T, Borodina I, Jensen M K, et al. CasEMBLR: Cas9-facilitated multiloci genomic integration of in vivo assembled DNA parts in saccharomyces cerevisiae. ACS Synthetic Biology, 2015, 4(11): 1226–1234
|
[45] |
Tsarmpopoulos I, Gourgues G, Blanchard A, Vashee S, Jores J, Lartigue C, Sirand-Pugnet P. In-yeast engineering of a bacterial genome using CRISPR/Cas9. ACS Synthetic Biology, 2016, 5(1): 104–109
|
[46] |
Kannan K, Tsvetanova B, Chuang R Y, Noskov V N, Assad-Garcia N, Ma L, Hutchison C A III, Smith H O, Glass J I, Merryman C, et al. One step engineering of the small-subunit ribosomal RNA using CRISPR/Cas9. Scientific Reports, 2016, 6: 30714
|
[47] |
Wang H H, Isaacs F J, Carr P A, Sun Z Z, Xu G, Forest C R, Church G M. Programming cells by multiplex genome engineering and accelerated evolution. Nature, 2009, 460(7257): 894–898
|
[48] |
Pál C, Papp B, Pósfai G. The dawn of evolutionary genome engineering. Nature Reviews. Genetics, 2014, 15(7): 504–512
|
[49] |
Yokobayashi Y, Weiss R, Arnold F H. Directed evolution of a genetic circuit. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(26): 16587–16591
|
[50] |
Mosberg J A, Lajoie M J, Church G M. Lambda red recombineering in Escherichia coli occurs through a fully single-stranded intermediate. Genetics, 2010, 186(3): 791–799
|
[51] |
Lajoie M J, Gregg C J, Mosberg J A, Washington G C, Church G M. Manipulating replisome dynamics to enhance lambda red-mediated multiplex genome engineering. Nucleic Acids Research, 2012, 40(22): e170
|
[52] |
Isaacs F J, Carr P A, Wang H H, Lajoie M J, Sterling B, Kraal L, Tolonen A C, Gianoulis T A, Goodman D B, Reppas N B, et al. Precise manipulation of chromosomes in vivo enables genome-wide Codon replacement. Science, 2011, 333(6040): 348–353
|
[53] |
Lajoie M J, Rovner A J, Goodman D B, Aerni H R, Haimovich A D, Kuznetsov G, Mercer J A, Wang H H, Carr P A, Mosberg J A, et al. Genomically recoded organisms expand biological functions. Science, 2013, 342(6156): 357–360
|
[54] |
Farzadfard F, Lu T K. Genomically encoded analog memory with precise in vivo DNA writing in living cell populations. Science, 2014, 346(6211): 1256272
|
[55] |
Perli S D, Cui C H, Lu T K. Continuous genetic recording with self-targeting CRISPR-Cas in human cells. Science, 2016, 353(6304): aag0511
|
[56] |
Barrick J E, Yu D S, Yoon S H, Jeong H, Oh T K, Schneider D, Lenski R E, Kim J F. Genome evolution and adaptation in a long-term experiment with Escherichia coli. Nature, 2009, 461(7268): 1243–1247
|
[57] |
Cooper V S, Schneider D, Blot M, Lenski R E. Mechanisms causing rapid and parallel losses of ribose catabolism in evolving populations of Escherichia coli B. Journal of Bacteriology, 2001, 183(9): 2834–2841
|
[58] |
Elena S F, Lenski R E. Evolution experiments with microorganisms: The dynamics and genetic bases of adaptation. Nature Reviews. Genetics, 2003, 4(6): 457–469
|
[59] |
Kolisnychenko V, Plunkett G, Herring C D, Feher T, Posfai J, Blattner F R, Posfai G. Engineering a reduced Escherichia coli genome. Genome Research, 2002, 12(4): 640–647
|
[60] |
Pósfai G, Plunkett G, Fehér T, Frisch D, Keil G M, Umenhoffer K, Kolisnychenko V, Stahl B, Sharma S S. Arruda M de, et al. Emergent properties of reduced-genome Escherichia coli. Science, 2006, 312(5776): 1044–1046
|
[61] |
Csörgő B, Nyerges Á, Pósfai G, Fehér T. System-level genome editing in microbes. Current Opinion in Microbiology, 2016, 33: 113–122
|
[62] |
St-Pierre F, Cui L, Priest D G, Endy D, Dodd I B, Shearwin K E. One-step cloning and chromosomal integration of DNA. ACS Synthetic Biology, 2013, 2(9): 537–541
|
[63] |
Santos C N S, Regitsky D D, Yoshikuni Y. Implementation of stable and complex biological systems through recombinase-assisted genome engineering. Nature Communications, 2013, 4: 2503
|
[64] |
Santos C N S, Yoshikuni Y. Engineering complex biological systems in bacteria through recombinase-assisted genome engineering. Nature Protocols, 2014, 9(6): 1320–1336
|
[65] |
Enyeart P J, Chirieleison S M, Dao M N, Perutka J, Quandt E M, Yao J, Whitt J T, Keatinge-Clay A T, Lambowitz A M, Ellington A D. Generalized bacterial genome editing using mobile group II introns and Cre-lox. Molecular Systems Biology, 2013, 9(1): 685
|
[66] |
Krishnakumar R, Grose C, Haft D H, Zaveri J, Alperovich N, Gibson D G, Merryman C, Glass J I. Simultaneous non-contiguous deletions using large synthetic DNA and site-specific recombinases. Nucleic Acids Research, 2014, 42(14): e111
|
[67] |
Dymond J S, Richardson S M, Coombes C E, Babatz T, Muller H, Annaluru N, Blake W J, Schwerzmann J W, Dai J, Lindstrom D L, et al. Synthetic chromosome arms function in yeast and generate phenotypic diversity by design. Nature, 2011, 477(7365): 471–476
|
[68] |
Karpinski J, Hauber I, Chemnitz J, Schäfer C, Paszkowski-Rogacz M, Chakraborty D, Beschorner N, Hofmann-Sieber H, Lange U C, Grundhoff A, et al. Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity. Nature Biotechnology, 2016, 34(4): 401–409
|
[69] |
Gibson D G, Young L, Chuang R Y, Venter J C, Hutchison C A, Smith H O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nature Methods, 2009, 6(5): 343–345
|
[70] |
Lartigue C, Glass J I, Alperovich N, Pieper R, Parmar P P, Hutchison C A, Smith H O, Venter J C. Genome transplantation in bacteria: Changing one species to another. Science, 2007, 317(5838): 632–638
|
[71] |
Lartigue C, Vashee S, Algire M A, Chuang R Y, Benders G A, Ma L, Noskov V N, Denisova E A, Gibson D G, Assad-Garcia N, et al. Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science, 2009, 325(5948): 1693–1696
|
[72] |
Karas B J, Jablanovic J, Irvine E, Sun L, Ma L, Weyman P D, Gibson D G, Glass J I, Venter J C, Hutchison III C A, et al. Transferring whole genomes from bacteria to yeast spheroplasts using entire bacterial cells to reduce DNA shearing. Nature Protocols, 2014, 9(4): 743–750
|
[73] |
Gibson D G, Glass J I, Lartigue C, Noskov V N, Chuang R Y, Algire M A, Benders G A, Montague M G, Ma L, Moodie M M, et al. Creation of a bacterial cell controlled by a chemically synthesized genome. Science, 2010, 329(5987): 52–56
|
[74] |
Kang H S, Charlop-Powers Z, Brady S F. Multiplexed CRISPR/Cas9- and TAR-mediated promoter engineering of natural product biosynthetic gene clusters in yeast. ACS Synthetic Biology, 2016, 5(9): 1002–1010
|
[75] |
Temme K, Zhao D, Voigt C A. Refactoring the nitrogen fixation gene cluster from Klebsiella oxytoca. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(18): 7085–7090
|
[76] |
Smanski M J, Bhatia S, Zhao D, Park Y, Woodruff L B A, Giannoukos G, Ciulla D, Busby M, Calderon J, Nicol R, et al. Functional optimization of gene clusters by combinatorial design and assembly. Nature Biotechnology, 2014, 32(12): 1241–1249
|
[77] |
Sander J D, Joung J K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature Biotechnology, 2014, 32(4): 347–355
|
/
〈 | 〉 |