Gene delivery into isolated Arabidopsis thaliana protoplasts and intact leaves using cationic, α-helical polypeptide

Nan Zheng, Ziyuan Song, Yang Liu, Lichen Yin, Jianjun Cheng

PDF(327 KB)
PDF(327 KB)
Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 521-528. DOI: 10.1007/s11705-017-1612-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Gene delivery into isolated Arabidopsis thaliana protoplasts and intact leaves using cationic, α-helical polypeptide

Author information +
History +

Abstract

The application of gene delivery materials has been mainly focused on mammalian cells while rarely extended to plant engineering. Cationic polymers and lipids have been widely utilized to efficiently deliver DNA and siRNA into mammalian cells. However, their application in plant cells is limited due to the different membrane structures and the presence of plant cell walls. In this study, we developed the cationic, α-helical polypeptide that can effectively deliver DNA into both isolated Arabidopsis thaliana protoplasts and intact leaves. The PPABLG was able to condense DNA to form nanocomplexes, and they exhibited significantly improved transfection efficiencies compared with commercial transfection reagent Lipofectamine 2000 and classical cell penetrating peptides such as poly(L-lysine), HIV-TAT, arginine9, and poly(L-arginine). This study therefore widens the utilities of helical polypeptide as a unique category of gene delivery materials, and may find their promising applications toward plant gene delivery.

Graphical abstract

Keywords

α-helical polypeptide / plant gene delivery / protoplast / intact leaves / transfection

Cite this article

Download citation ▾
Nan Zheng, Ziyuan Song, Yang Liu, Lichen Yin, Jianjun Cheng. Gene delivery into isolated Arabidopsis thaliana protoplasts and intact leaves using cationic, α-helical polypeptide. Front. Chem. Sci. Eng., 2017, 11(4): 521‒528 https://doi.org/10.1007/s11705-017-1612-8

References

[1]
Borchert R, Renner  S S, Calle  Z, Navarrete D ,  Tye A, Gautier  L, Spichiger R ,  von Hildebrand P . Photoperiodic induction of synchronous flowering near the Equator. Nature, 2005, 433(7026): 627–629
CrossRef Google scholar
[2]
Dubreuil G, Magliano  M, Dubrana M P ,  Lozano J ,  Lecomte P ,  Favery B ,  Abad P, Rosso  M N. Tobacco rattle virus mediates gene silencing in a plant parasitic root-knot nematode. Journal of Experimental Botany, 2009, 60(14): 4041–4050
CrossRef Google scholar
[3]
Pasupathy K, Lin  S, Hu Q ,  Luo H, Ke  P C. Direct plant gene delivery with a poly(amidoamine) dendrimer. Biotechnology Journal, 2008, 3(8): 1078–1082
CrossRef Google scholar
[4]
Hussain M M, Melcher  U, Essenberg R C . Infection of evacuolated turnip protoplasts with liposome-packaged cauliflower mosaic-virus. Plant Cell Reports, 1985, 4(2): 58–62
CrossRef Google scholar
[5]
Li Y, Cui  H, Song Y ,  Li Y, Huang  J. Transient expression of exogenous gene into plant cell mediated by PEI nanovector. Agricultural Sciences in China, 2011, 10(6): 820–826
CrossRef Google scholar
[6]
Boynton J E, Gillham  N W, Harris  E H, Hosler  J P, Johnson  A M, Jones  A R, Randolphanderson  B L, Robertson  D, Klein T M ,  Shark K B ,  Sanford J C . Chloroplast transformation in chlamydomonas with high-velocity microprojectiles. Science, 1988, 240(4858): 1534–1538
CrossRef Google scholar
[7]
Carqueijeiro I, Masini  E, Foureau E ,  Sepulveda L J ,  Marais E ,  Lanoue A ,  Besseau S ,  Papon N ,  Clastre M ,  de Bernonville T D ,  Glevarec G ,  Atehortua L ,  Oudin A ,  Courdavault V . Virus-induced gene silencing in Catharanthus roseus by biolistic inoculation of tobacco rattle virus vectors. Plant Biology, 2015, 17(6): 1242–1246
CrossRef Google scholar
[8]
Koop H U, Steinmuller  K, Wagner H ,  Rossler C ,  Eibl C, Sacher  L. Integration of foreign sequences into the tobacco plastome via polyethylene glycol-mediated protoplast transformation. Planta, 1996, 199(2): 193–201
CrossRef Google scholar
[9]
Wang F, Liu  J, Tong C ,  Wang Q, Tang  D, Yi L ,  Wang L L ,  Liu X M . Magnetic nanoparticle as rice transgene vector mediated by electroporation. Chinese Journal of Analytical Chemistry, 2010, 38(5): 617–621
[10]
Miranda A, Janssen  G, Hodges L ,  Peralta E G ,  Ream W. Agrobacterium-tumefaciens transfers extremely long T-DNAs by a unidirectional mechanism. Journal of Bacteriology, 1992, 174(7): 2288–2297
CrossRef Google scholar
[11]
Rakoczy-Trojanowska M . Alternative methods of plant transformation. Cellular & Molecular Biology Letters, 2002, 7(3): 849–858
[12]
Nair R, Varghese  S H, Nair  B G, Maekawa  T, Yoshida Y ,  Kumar D S . Nanoparticulate material delivery to plants. Plant Science, 2010, 179(3): 154–163
CrossRef Google scholar
[13]
Chugh A, Eudes  F. Study of uptake of cell penetrating peptides and their cargoes in permeabilized wheat immature embryos. FEBS Journal, 2008, 275(10): 2403–2414
CrossRef Google scholar
[14]
Chen C, Chou  J, Liu B ,  Chang M ,  Lee H. Transfection and expression of plasmid DNA in plant cells by an arginine-rich intracellular delivery peptide without protoplast preparation. FEBS Letters, 2007, 581(9): 1891–1897
CrossRef Google scholar
[15]
Lakshmanan M, Kodama  Y, Yoshizumi T ,  Sudesh K ,  Numata K . Rapid and efficient gene delivery into plant cells using designed peptide carriers. Biomacromolecules, 2013, 14(1): 10–16
CrossRef Google scholar
[16]
Hariton-Gazal E, Rosenbluh  J, Graessmann A ,  Gilon C ,  Loyter A . Direct translocation of histone molecules across cell membranes. Journal of Cell Science, 2003, 116(22): 4577–4586
CrossRef Google scholar
[17]
Rosenbluh J, Singh  S K, Gafni  Y, Graessmann A ,  Loyter A . Non-endocytic penetration of core histones into petunia protoplasts and cultured cells: A novel mechanism for the introduction of macromolecules into plant cells. Biochimica et Biophysica Acta-Biomembranes, 2004, 1664(2): 230–240
CrossRef Google scholar
[18]
Wei Y, Niu  J, Huan L ,  Huang A ,  He L, Wang  G. Cell penetrating peptide can transport dsRNA into microalgae with thin cell walls. Algal Research-Biomass Biofuels and Bioproducts, 2015, 8: 135–139
[19]
Hyman J M, Geihe  E I, Trantow  B M, Parvin  B, Wender P A . A molecular method for the delivery of small molecules and proteins across the cell wall of algae using molecular transporters. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(33): 13225–13230
CrossRef Google scholar
[20]
Fonseca S B, Pereira  M P, Kelley  S O. Recent advances in the use of cell-penetrating peptides for medical and biological applications. Advanced Drug Delivery Reviews, 2009, 61(11): 953–964
CrossRef Google scholar
[21]
Elsner M B, Herold  H M, Muller-Herrmann  S, Bargel H ,  Scheibel T . Enhanced cellular uptake of engineered spider silk particles. Biomaterials Science, 2015, 3(3): 543–551
CrossRef Google scholar
[22]
Saw P E, Ko  Y T, Jon  S. Efficient liposomal nanocarrier-mediated oligodeoxynucleotide delivery involving dual use of a cell-penetrating peptide as a packaging and intracellular delivery agent. Macromolecular Rapid Communications, 2010, 31(13): 1155–1162
CrossRef Google scholar
[23]
Patra S, Roy  E, Madhuri R ,  Sharma P K . The next generation cell-penetrating peptide and carbon dot conjugated nano-liposome for transdermal delivery of curcumin. Biomaterials Science, 2016, 4(3): 418–429
CrossRef Google scholar
[24]
Chen S, Rong  L, Jia H Z ,  Qin S Y ,  Zeng X, Zhuo  R X, Zhang  X Z. Co-delivery of proapoptotic peptide and p53 DNA by reduction-sensitive polypeptides for cancer therapy. Biomaterials Science, 2015, 3(5): 753–763
CrossRef Google scholar
[25]
Gabrielson N P ,  Lu H, Yin  L, Li D ,  Wang F, Cheng  J. Reactive and bioactive cationic α-helical polypeptide template for nonviral gene delivery. Angewandte Chemie International Edition, 2012, 51(5): 1143–1147
CrossRef Google scholar
[26]
Lu H, Wang  J, Bai Y ,  Lang J W ,  Liu S, Lin  Y, Cheng J . Ionic polypeptides with unusual helical stability. Nature Communications, 2011, 2: 206
CrossRef Google scholar
[27]
Zheng N, Song  Z, Liu Y ,  Zhang R ,  Zhang R ,  Yao C, Uckun  F M, Yin  L, Cheng J . Redox-responsive, reversibly-crosslinked thiolated cationic helical polypeptides for efficient siRNA encapsulation and delivery. Journal of Controlled Release, 2015, 205: 231–239
CrossRef Google scholar
[28]
Zheng N, Yin  L, Song Z ,  Ma L, Tang  H, Gabrielson N P ,  Lu H, Cheng  J. Maximizing gene delivery efficiencies of cationic helical polypeptides via balanced membrane penetration and cellular targeting. Biomaterials, 2014, 35(4): 1302–1314
CrossRef Google scholar
[29]
Yin L, Tang  H, Kim K H ,  Zheng N ,  Song Z, Gabrielson  N P, Lu  H, Cheng J . Light-responsive helical polypeptides capable of reducing toxicity and unpacking DNA: Toward nonviral gene delivery. Angewandte Chemie International Edition, 2013, 52(35): 9182–9186
CrossRef Google scholar
[30]
Yin L, Song  Z, Kim K H ,  Zheng N ,  Gabrielson N P ,  Cheng J . Non-viral gene delivery via membrane-penetrating, mannose-targeting supramolecular self-assembled nanocomplexes. Advanced Materials, 2013, 25(22): 3063–3070
CrossRef Google scholar
[31]
Rondeau-Mouro C, Defer  D, Leboeuf E ,  Lahaye M . Assessment of cell wall porosity in Arabidopsis thaliana by NMR spectroscopy. International Journal of Biological Macromolecules, 2008, 42(2): 83–92
CrossRef Google scholar
[32]
Gunl M, Pauly  M. AXY3 encodes a alpha-xylosidase that impacts the structure and accessibility of the hemicellulose xyloglucan in Arabidopsis plant cell walls. Planta, 2011, 233(4): 707–719
CrossRef Google scholar
[33]
Lu S, Hu  J, Liu B ,  Lee C, Li  J, Chou J ,  Lee H J . Arginine-rich intracellular delivery peptides synchronously deliver covalently and noncovalently linked proteins into plant cells. Journal of Agricultural and Food Chemistry, 2010, 58(4): 2288–2294
CrossRef Google scholar
[34]
Eudes F, Chugh  A. Cell-penetrating peptides: From mammalian to plant cells. Plant Signaling & Behavior, 2008, 3(8): 549–550
CrossRef Google scholar
[35]
Battey N H, James  N C, Greenland  A J, Brownlee  C. Exocytosis and endocytosis. Plant Cell, 1999, 11(4): 643–660
CrossRef Google scholar
[36]
Chiu W L, Niwa  Y, Zeng W ,  Hirano T ,  Kobayashi H ,  Sheen J . Engineered GFP as a vital reporter in plants. Current Biology, 1996, 6(3): 325–330
CrossRef Google scholar
[37]
Pedelacq J D, Cabantous  S, Tran T ,  Terwilliger T C ,  Waldo G S . Engineering and characterization of a superfolder green fluorescent protein. Nature Biotechnology, 2006, 24(1): 79–88
CrossRef Google scholar
[38]
Liu S, Yang  J X, Ren  H Q, O’Keeffe-Ahern  J, Zhou D Z ,  Zhou H, Chen  J T, Guo  T Y. Multifunctional oligomer incorporation: a potent strategy to enhance the transfection activity of poly(L-lysine). Biomaterials Science, 2016, 4(3): 522–532
CrossRef Google scholar
[39]
Mintzer M A, Simanek  E E. Nonviral vectors for gene delivery. Chemical Reviews, 2009, 109(2): 259–302
CrossRef Google scholar
[40]
Navarro E, Baun  A, Behra R ,  Hartmann N B ,  Filser J ,  Miao A J ,  Quigg A ,  Santschi P H ,  Sigg L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology (London, England), 2008, 17(5): 372–386
CrossRef Google scholar
[41]
Fleischer A, O’Neill  M A, Ehwald  R. The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiology, 1999, 121(3): 829–838
CrossRef Google scholar
[42]
Tang H, Yin  L, Kim K H ,  Cheng J . Helical poly(arginine) mimics with superior cell-penetrating and molecular transporting properties. Chemical Science (Cambridge), 2013, 4(10): 3839–3844
CrossRef Google scholar

Acknowledgements

L. Y. acknowledges the support from the National Natural Science Foundation of China (Grant Nos. 51403145 and 51573123), the Science and Technology Department of Jiangsu Province (BK20140333), and Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD). J. C. acknowledges support from the NSF (CHE-1153122), the NIH (NIH Director’s New Innovator Award 1DP2OD007246 and 1R21EB013379). J. C. also acknowledges support from Dr. Ray Zielinski (Department of Plant Biology, University of Illinois at Urbana–Champaign) for the provision of plants and plasmid DNA, as well as the technic of protoplasts isolation.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag GmbH Germany
AI Summary AI Mindmap
PDF(327 KB)

Accesses

Citations

Detail

Sections
Recommended

/