Gene delivery into isolated Arabidopsis thaliana protoplasts and intact leaves using cationic, α-helical polypeptide

Nan Zheng , Ziyuan Song , Yang Liu , Lichen Yin , Jianjun Cheng

Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 521 -528.

PDF (327KB)
Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (4) : 521 -528. DOI: 10.1007/s11705-017-1612-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Gene delivery into isolated Arabidopsis thaliana protoplasts and intact leaves using cationic, α-helical polypeptide

Author information +
History +
PDF (327KB)

Abstract

The application of gene delivery materials has been mainly focused on mammalian cells while rarely extended to plant engineering. Cationic polymers and lipids have been widely utilized to efficiently deliver DNA and siRNA into mammalian cells. However, their application in plant cells is limited due to the different membrane structures and the presence of plant cell walls. In this study, we developed the cationic, α-helical polypeptide that can effectively deliver DNA into both isolated Arabidopsis thaliana protoplasts and intact leaves. The PPABLG was able to condense DNA to form nanocomplexes, and they exhibited significantly improved transfection efficiencies compared with commercial transfection reagent Lipofectamine 2000 and classical cell penetrating peptides such as poly(L-lysine), HIV-TAT, arginine9, and poly(L-arginine). This study therefore widens the utilities of helical polypeptide as a unique category of gene delivery materials, and may find their promising applications toward plant gene delivery.

Graphical abstract

Keywords

α-helical polypeptide / plant gene delivery / protoplast / intact leaves / transfection

Cite this article

Download citation ▾
Nan Zheng, Ziyuan Song, Yang Liu, Lichen Yin, Jianjun Cheng. Gene delivery into isolated Arabidopsis thaliana protoplasts and intact leaves using cationic, α-helical polypeptide. Front. Chem. Sci. Eng., 2017, 11(4): 521-528 DOI:10.1007/s11705-017-1612-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Borchert RRenner  S SCalle  ZNavarrete D Tye AGautier  LSpichiger R von Hildebrand P . Photoperiodic induction of synchronous flowering near the Equator. Nature2005433(7026): 627–629

[2]

Dubreuil GMagliano  MDubrana M P Lozano J Lecomte P Favery B Abad PRosso  M N. Tobacco rattle virus mediates gene silencing in a plant parasitic root-knot nematode. Journal of Experimental Botany200960(14): 4041–4050

[3]

Pasupathy KLin  SHu Q Luo HKe  P C. Direct plant gene delivery with a poly(amidoamine) dendrimer. Biotechnology Journal20083(8): 1078–1082

[4]

Hussain M MMelcher  UEssenberg R C . Infection of evacuolated turnip protoplasts with liposome-packaged cauliflower mosaic-virus. Plant Cell Reports19854(2): 58–62

[5]

Li YCui  HSong Y Li YHuang  J. Transient expression of exogenous gene into plant cell mediated by PEI nanovector. Agricultural Sciences in China201110(6): 820–826

[6]

Boynton J EGillham  N WHarris  E HHosler  J PJohnson  A MJones  A RRandolphanderson  B LRobertson  DKlein T M Shark K B Sanford J C . Chloroplast transformation in chlamydomonas with high-velocity microprojectiles. Science1988240(4858): 1534–1538

[7]

Carqueijeiro IMasini  EFoureau E Sepulveda L J Marais E Lanoue A Besseau S Papon N Clastre M de Bernonville T D Glevarec G Atehortua L Oudin A Courdavault V . Virus-induced gene silencing in Catharanthus roseus by biolistic inoculation of tobacco rattle virus vectors. Plant Biology201517(6): 1242–1246

[8]

Koop H USteinmuller  KWagner H Rossler C Eibl CSacher  L. Integration of foreign sequences into the tobacco plastome via polyethylene glycol-mediated protoplast transformation. Planta1996199(2): 193–201

[9]

Wang FLiu  JTong C Wang QTang  DYi L Wang L L Liu X M . Magnetic nanoparticle as rice transgene vector mediated by electroporation. Chinese Journal of Analytical Chemistry201038(5): 617–621

[10]

Miranda AJanssen  GHodges L Peralta E G Ream W. Agrobacterium-tumefaciens transfers extremely long T-DNAs by a unidirectional mechanism. Journal of Bacteriology1992174(7): 2288–2297

[11]

Rakoczy-Trojanowska M . Alternative methods of plant transformation. Cellular & Molecular Biology Letters20027(3): 849–858

[12]

Nair RVarghese  S HNair  B GMaekawa  TYoshida Y Kumar D S . Nanoparticulate material delivery to plants. Plant Science2010179(3): 154–163

[13]

Chugh AEudes  F. Study of uptake of cell penetrating peptides and their cargoes in permeabilized wheat immature embryos. FEBS Journal2008275(10): 2403–2414

[14]

Chen CChou  JLiu B Chang M Lee H. Transfection and expression of plasmid DNA in plant cells by an arginine-rich intracellular delivery peptide without protoplast preparation. FEBS Letters2007581(9): 1891–1897

[15]

Lakshmanan MKodama  YYoshizumi T Sudesh K Numata K . Rapid and efficient gene delivery into plant cells using designed peptide carriers. Biomacromolecules201314(1): 10–16

[16]

Hariton-Gazal ERosenbluh  JGraessmann A Gilon C Loyter A . Direct translocation of histone molecules across cell membranes. Journal of Cell Science2003116(22): 4577–4586

[17]

Rosenbluh JSingh  S KGafni  YGraessmann A Loyter A . Non-endocytic penetration of core histones into petunia protoplasts and cultured cells: A novel mechanism for the introduction of macromolecules into plant cells. Biochimica et Biophysica Acta-Biomembranes20041664(2): 230–240

[18]

Wei YNiu  JHuan L Huang A He LWang  G. Cell penetrating peptide can transport dsRNA into microalgae with thin cell walls. Algal Research-Biomass Biofuels and Bioproducts20158: 135–139

[19]

Hyman J MGeihe  E ITrantow  B MParvin  BWender P A . A molecular method for the delivery of small molecules and proteins across the cell wall of algae using molecular transporters. Proceedings of the National Academy of Sciences of the United States of America2012109(33): 13225–13230

[20]

Fonseca S BPereira  M PKelley  S O. Recent advances in the use of cell-penetrating peptides for medical and biological applications. Advanced Drug Delivery Reviews200961(11): 953–964

[21]

Elsner M BHerold  H MMuller-Herrmann  SBargel H Scheibel T . Enhanced cellular uptake of engineered spider silk particles. Biomaterials Science20153(3): 543–551

[22]

Saw P EKo  Y TJon  S. Efficient liposomal nanocarrier-mediated oligodeoxynucleotide delivery involving dual use of a cell-penetrating peptide as a packaging and intracellular delivery agent. Macromolecular Rapid Communications201031(13): 1155–1162

[23]

Patra SRoy  EMadhuri R Sharma P K . The next generation cell-penetrating peptide and carbon dot conjugated nano-liposome for transdermal delivery of curcumin. Biomaterials Science20164(3): 418–429

[24]

Chen SRong  LJia H Z Qin S Y Zeng XZhuo  R XZhang  X Z. Co-delivery of proapoptotic peptide and p53 DNA by reduction-sensitive polypeptides for cancer therapy. Biomaterials Science20153(5): 753–763

[25]

Gabrielson N P Lu HYin  LLi D Wang FCheng  J. Reactive and bioactive cationic α-helical polypeptide template for nonviral gene delivery. Angewandte Chemie International Edition201251(5): 1143–1147

[26]

Lu HWang  JBai Y Lang J W Liu SLin  YCheng J . Ionic polypeptides with unusual helical stability. Nature Communications20112: 206

[27]

Zheng NSong  ZLiu Y Zhang R Zhang R Yao CUckun  F MYin  LCheng J . Redox-responsive, reversibly-crosslinked thiolated cationic helical polypeptides for efficient siRNA encapsulation and delivery. Journal of Controlled Release2015205: 231–239

[28]

Zheng NYin  LSong Z Ma LTang  HGabrielson N P Lu HCheng  J. Maximizing gene delivery efficiencies of cationic helical polypeptides via balanced membrane penetration and cellular targeting. Biomaterials201435(4): 1302–1314

[29]

Yin LTang  HKim K H Zheng N Song ZGabrielson  N PLu  HCheng J . Light-responsive helical polypeptides capable of reducing toxicity and unpacking DNA: Toward nonviral gene delivery. Angewandte Chemie International Edition201352(35): 9182–9186

[30]

Yin LSong  ZKim K H Zheng N Gabrielson N P Cheng J . Non-viral gene delivery via membrane-penetrating, mannose-targeting supramolecular self-assembled nanocomplexes. Advanced Materials201325(22): 3063–3070

[31]

Rondeau-Mouro CDefer  DLeboeuf E Lahaye M . Assessment of cell wall porosity in Arabidopsis thaliana by NMR spectroscopy. International Journal of Biological Macromolecules200842(2): 83–92

[32]

Gunl MPauly  M. AXY3 encodes a alpha-xylosidase that impacts the structure and accessibility of the hemicellulose xyloglucan in Arabidopsis plant cell walls. Planta2011233(4): 707–719

[33]

Lu SHu  JLiu B Lee CLi  JChou J Lee H J . Arginine-rich intracellular delivery peptides synchronously deliver covalently and noncovalently linked proteins into plant cells. Journal of Agricultural and Food Chemistry201058(4): 2288–2294

[34]

Eudes FChugh  A. Cell-penetrating peptides: From mammalian to plant cells. Plant Signaling & Behavior20083(8): 549–550

[35]

Battey N HJames  N CGreenland  A JBrownlee  C. Exocytosis and endocytosis. Plant Cell199911(4): 643–660

[36]

Chiu W LNiwa  YZeng W Hirano T Kobayashi H Sheen J . Engineered GFP as a vital reporter in plants. Current Biology19966(3): 325–330

[37]

Pedelacq J DCabantous  STran T Terwilliger T C Waldo G S . Engineering and characterization of a superfolder green fluorescent protein. Nature Biotechnology200624(1): 79–88

[38]

Liu SYang  J XRen  H QO’Keeffe-Ahern  JZhou D Z Zhou HChen  J TGuo  T Y. Multifunctional oligomer incorporation: a potent strategy to enhance the transfection activity of poly(L-lysine). Biomaterials Science20164(3): 522–532

[39]

Mintzer M ASimanek  E E. Nonviral vectors for gene delivery. Chemical Reviews2009109(2): 259–302

[40]

Navarro EBaun  ABehra R Hartmann N B Filser J Miao A J Quigg A Santschi P H Sigg L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology (London, England)200817(5): 372–386

[41]

Fleischer AO’Neill  M AEhwald  R. The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiology1999121(3): 829–838

[42]

Tang HYin  LKim K H Cheng J . Helical poly(arginine) mimics with superior cell-penetrating and molecular transporting properties. Chemical Science (Cambridge)20134(10): 3839–3844

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag GmbH Germany

AI Summary AI Mindmap
PDF (327KB)

2375

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/