Profiling influences of gene overexpression on heterologous resveratrol production in Saccharomyces cerevisiae

Duo Liu, Bingzhi Li, Hong Liu, Xuejiao Guo, Yingjin Yuan

PDF(296 KB)
PDF(296 KB)
Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (1) : 117-125. DOI: 10.1007/s11705-016-1601-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Profiling influences of gene overexpression on heterologous resveratrol production in Saccharomyces cerevisiae

Author information +
History +

Abstract

Metabolic engineering of heterologous resveratrol production in Saccharomyces cerevisiae faces challenges as the precursor L-tyrosine is stringently regulated by a complex biosynthetic system. We overexpressed the main gene targets in the upstream pathways to investigate their influences on the downstream resveratrol production. Single-gene overexpression and DNA assembly-directed multigene overexpression affect the production of resveratrol as well as its precursor p-coumaric acid. Finally, the collaboration of selected gene targets leads to an optimal resveratrol production of 66.14±3.74 mg·L–1, 2.27 times higher than the initial production in YPD medium (4% glucose). The newly discovered gene targets TRP1 expressing phosphoribosylanthranilate isomerase, ARO3 expressing 3-deoxy-D-arabino-heptulosonate-7-phosphate synthase, and 4CL expressing 4-coumaryl-CoA ligase show notable positive impacts on resveratrol production in S. cerevisiae.

Graphical abstract

Keywords

resveratrol / aromatic amino acid / DNA assembly / metabolic engineering / gene overexpression

Cite this article

Download citation ▾
Duo Liu, Bingzhi Li, Hong Liu, Xuejiao Guo, Yingjin Yuan. Profiling influences of gene overexpression on heterologous resveratrol production in Saccharomyces cerevisiae. Front. Chem. Sci. Eng., 2017, 11(1): 117‒125 https://doi.org/10.1007/s11705-016-1601-3

References

[1]
Jeandet P, Delaunois B, Aziz A, Donnez D, Vasserot Y, Cordelier S, Courot E. Metabolic engineering of yeast and plants for the production of the biologically active hydroxystilbene, resveratrol. Journal of Biomedicine & Biotechnology, 2012, 579089
[2]
Mei Y Z, Liu R X, Wang D P, Wang X, Dai C C. Biocatalysis and bio-transformation of resveratrol in microorganisms. Biotechnology Letters, 2015, 37(1): 9–18
CrossRef Google scholar
[3]
Borodina I, Nielsen J. Advances in metabolic engineering of yeast Saccharomyces cerevisiae for production of chemicals. Biotechnology Journal, 2014, 9(5): 609–620
CrossRef Google scholar
[4]
Becker J V, Armstrong G O, vander Merwe M J, Lambrechts M G, Vivier M A, Pretorius I S. Metabolic engineering of Saccharomyces cerevisiae for the synthesis of the wine-related antioxidant resveratrol. FEMS Yeast Research, 2003, 4(1): 79–85
CrossRef Google scholar
[5]
Beekwilder J, Wolswinkel R, Jonker H, Hall R, deVos C H, Bovy A. Production of resveratrol in recombinant microorganisms. Applied and Environmental Microbiology, 2006, 72(8): 5670–5672
CrossRef Google scholar
[6]
Zhang Y, Li S Z, Li J, Pan X, Cahoon R E, Jaworski J G, Wang X, Jez J M, Chen F, Yu O. Using unnatural protein fusions to engineer resveratrol biosynthesis in yeast and Mammalian cells. Journal of the American Chemical Society, 2006, 128(40): 13030–13031
CrossRef Google scholar
[7]
Shin S Y, Jung S M, Kim M D, Han N S, Seo J H. Production of resveratrol from tyrosine in metabolically engineered Saccharomyces cerevisiae. Enzyme and Microbial Technology, 2012, 51(4): 211–216
CrossRef Google scholar
[8]
Trantas E, Panopoulos N, Ververidis F. Metabolic engineering of the complete pathway leading to heterologous biosynthesis of various flavonoids and stilbenoids in Saccharomyces cerevisiae. Metabolic Engineering, 2009, 11(6): 355–366
CrossRef Google scholar
[9]
Yan Y, Kohli A, Koffas M A. Biosynthesis of natural flavanones in Saccharomyces cerevisiae. Applied and Environmental Microbiology, 2005, 71(9): 5610–5613
CrossRef Google scholar
[10]
Kumar S, Omer S, Chitransh S, Khan B M. Cinnamate 4-hydroxylase downregulation in transgenic tobacco alters transcript level of other phenylpropanoid pathway genes. International Journal of Advanced Biotechnology and Research, 2012, 3(2): 545–557
[11]
Wang Y, Halls C, Zhang J, Matsuno M, Zhang Y, Yu O. Stepwise increase of resveratrol biosynthesis in yeast Saccharomyces cerevisiae by metabolic engineering. Metabolic Engineering, 2011, 13(5): 455–463
CrossRef Google scholar
[12]
Wang Y, Yu O. Synthetic scaffolds increased resveratrol biosynthesis in engineered yeast cells. Journal of Biotechnology, 2012, 157(1): 258–260
CrossRef Google scholar
[13]
Luttik M A, Vuralhan Z, Suir E, Braus G H, Pronk J T, Daran J M. Alleviation of feedback inhibition in Saccharomyces cerevisiae aromatic amino acid biosynthesis: Quantification of metabolic impact. Metabolic Engineering, 2008, 10(3-4): 141–153
CrossRef Google scholar
[14]
Rodriguez A, Kildegaard K R, Li M, Borodina I, Nielsen J. Establishment of a yeast platform strain for production of p-coumaric acid through metabolic engineering of aromatic amino acid biosynthesis. Metabolic Engineering, 2015, 31: 181–188
CrossRef Google scholar
[15]
Koopman F, Beekwilder J, Crimi B, van Houwelingen A, Hall R D, Bosch D, van Maris A J, Pronk J T, Daran J M. De novo production of the flavonoid naringenin in engineered Saccharomyces cerevisiae. Microbial Cell Factories, 2012, 11(1): 155
CrossRef Google scholar
[16]
Juminaga D, Baidoo E E K, Redding-Johanson A M, Batth T S, Burd H, Mukhopadhyay A, Petzold C J, Keasling J D. Modular engineering of L-tyrosine production in Escherichia coli. Applied and Environmental Microbiology, 2012, 78(1): 89–98
CrossRef Google scholar
[17]
Reid R J, Sunjevaric I, Kedacche M, Rothstein R. Efficient PCR-based gene disruption in Saccharomyces strains using intergenic primers. Yeast (Chichester, England), 2002, 19(4): 319–328
CrossRef Google scholar
[18]
Gietz R D, Schiestl R H, Willems A R, Woods R A. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast (Chichester, England), 1995, 11(4): 355–360
CrossRef Google scholar
[19]
Sun J, Shao Z Y, Zhao H, Nair N, Wen F, Xu J H, Zhao H. Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae. Biotechnology and Bioengineering, 2012, 109(8): 2082–2092
CrossRef Google scholar
[20]
Shao Z, Zhao H, Zhao H. DNA assembler, an in vivo genetic method for rapid construction of biochemical pathways. Nucleic Acids Research, 2008, 37(2): e16
CrossRef Google scholar
[21]
Sydor T, Schaffer S, Boles E. Considerable increase in resveratrol production by recombinant industrial yeast strains with use of rich medium. Applied and Environmental Microbiology, 2010, 76(10): 3361–3363
CrossRef Google scholar
[22]
Braus G, Paravicini G, Hütter R. A consensus transcription termination sequence in the promoter region is necessary for efficient gene expression of the TRP1 gene of Saccharomyces cerevisiae. Molecular & General Genetics, 1988, 212(3): 495–504
CrossRef Google scholar
[23]
Kim S, Mellor J, Kingsman A J, Kingsman S M. Multiple control element in the TRP1 promoter of Saccharomyces cerevisiae. Molecular and Cellular Biology, 1986, 6(12): 4251–4258
CrossRef Google scholar
[24]
Teshiba S, Furter R, Niederberger P, Braus G, Paravicini G. Cloning of the ARO3 gene of Saccharomyces cerevisiae and its regulation. Molecular & General Genetics, 1986, 205(2): 353–357
CrossRef Google scholar
[25]
Du J, Yuan Y B, Si T, Lian J Z, Zhao H M. Customized optimization of metabolic pathways by combinatorial transcriptional engineering. Nucleic Acids Research, 2012, 40(18): e142
CrossRef Google scholar
[26]
Luo Y, Li B Z, Liu D, Zhang L, Chen Y, Jia B, Zeng B X, Zhao H, Yuan Y J. Engineered biosynthesis of natural products in heterologous hosts. Chemical Society Reviews, 2015, 44(15): 5265–5290
CrossRef Google scholar
[27]
Santos C N, Stephanopoulos G. Melanin-based high-throughput screen for L-tyrosine production in Escherichia coli. Applied and Environmental Microbiology, 2008, 74(4): 1190–1197
CrossRef Google scholar

Acknowledgments

The authors declare no competing financial interest. This work was funded by the National Basic Research Program of China (973 Program, Grant No. 2014CB745100) and the National High Technology Research and Development Program of China (863 Program, Grant No. 2012AA02A701), the International S&T Cooperation Program of China (2015DFA00960), and the National Natural Science Foundation of China (Major Program, Grant No. 21390203).ƒ

Electronic Supplementary Material

Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11705-016-1601-3 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2017 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(296 KB)

Accesses

Citations

Detail

Sections
Recommended

/