Electrochemistry during efficient copper recovery from complex electronic waste using ammonia based solutions

Zhi Sun , Hongbin Cao , Prakash Venkatesan , Wei Jin , Yanping Xiao , Jilt Sietsma , Yongxiang Yang

Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 308 -316.

PDF (331KB)
Front. Chem. Sci. Eng. ›› 2017, Vol. 11 ›› Issue (3) : 308 -316. DOI: 10.1007/s11705-016-1587-x
RESEARCH ARTICLE
RESEARCH ARTICLE

Electrochemistry during efficient copper recovery from complex electronic waste using ammonia based solutions

Author information +
History +
PDF (331KB)

Abstract

Leaching selectivity during metal recovery from complex electronic waste using a hydrochemical process is always one of the generic issues. It was recently improved by using ammonia-based leaching process, specifically for electronic waste enriched with copper. This research proposes electrodeposition as the subsequent approach to effectively recover copper from the solutions after selective leaching of the electronic waste and focuses on recognising the electrochemical features of copper recovery. The electrochemical reactions were investigated by considering the effects of copper concentration, scan rate and ammonium salts. The diffusion coefficient, charge transfer coefficient and heterogeneous reaction constant of the electrodeposition process were evaluated in accordance with different solution conditions. The results have shown that electrochemical recovery of copper from ammonia-based solution under the conditions of selective electronic waste treatment is charge transfer controlled and provide bases to correlate the kinetic parameters with further optimisation of the selective recovery of metals from electronic waste.

Graphical abstract

Keywords

copper recovery / electronic waste / end-of-life products / selective leaching / electrodeposition

Cite this article

Download citation ▾
Zhi Sun, Hongbin Cao, Prakash Venkatesan, Wei Jin, Yanping Xiao, Jilt Sietsma, Yongxiang Yang. Electrochemistry during efficient copper recovery from complex electronic waste using ammonia based solutions. Front. Chem. Sci. Eng., 2017, 11(3): 308-316 DOI:10.1007/s11705-016-1587-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Omar HRohani  S. Treatment of landfill waste, leachate and landfill gas: A review. Frontiers of Chemical Science and Engineering20159(1): 15–32

[2]

Bigum MBrogaard  LChristensen T H . Metal recovery from high-grade WEEE: A life cycle assessment. Journal of Hazardous Materials2012207-208(1): 8–14

[3]

Anindya A. Minor elements distribution during the smelting of WEEE with copper scrap. Dissertation for the Doctoral Degree. Melbourne: RMIT University2012

[4]

Montero RGuevara  Ade la Torre E. Recovery of gold, silver, copper and niobium from printed circuit boards using leaching column. Journal of Earth Science and Engineering20122: 590–595

[5]

Liang GTang  JLiu W Zhou Q. Optimizing mixed culture of two acidophiles to improve copper recovery from printed circuit boards (PCBs). Journal of Hazardous Materials2013250-251: 238–245

[6]

Joda N NRashchi  F. Recovery of ultra fine grained silver and copper from PC board scraps. Separation and Purification Technology201292: 36–42

[7]

Rudnik EKołczyk  KKutyła D . Comparative studies on hydrometallurgical treatment of smelted low-grade electronic scraps for selective copper recovery. Transactions of Nonferrous Metals Society of China201525(8): 2763–2771

[8]

Harris G BWhite  C WDemopoulos  G PBallantyne  B. Recovery of copper from a massive polymetallic sulphide by high concentration chloride leaching. Canadian Metallurgical Quarterly200847(3): 347–356

[9]

Long L HJeong  JLee J C Pandey B D Yoo J M Huyunh T H . Hydrometallurgical process for copper recovery from waste printed circuit boards (PCBs). Mineral Processing and Extractive Metallurgy Review201132(2): 90–104

[10]

Koyama KTanaka  MLee J C . Copper leaching behavior from waste printed circuit board in ammoniacal alkaline solution. Materials Transactions200647(7): 1788–1792

[11]

Sun Z H I Xiao YSietsma  JAgterhuis H Visser G Yang Y. Selective copper recovery from complex mixtures of end-of-life electronic products with ammonia-based solution. Hydrometallurgy2015152: 91–99

[12]

Wang JWang  HHan Z Han J. Electrodeposited porous Pb electrode with improved electrocatalytic performance for the electroreduction of CO2 to formic acid. Frontiers of Chemical Science and Engineering20159(1): 57–63

[13]

Nila CGonzález  I. The role of pH and Cu(II) concentration in the electrodeposition of Cu(II) in NH4Cl solutions. Journal of Electroanalytical Chemistry1996401(1-2): 171–182

[14]

Ramos AMiranda-Hernández  MGonzález I . Influence of chloride and nitrate anions on copper electrodeposition in ammonia media. Journal of the Electrochemical Society2001148(4): C315–C321

[15]

Grujicic DPesic  B. Reaction and nucleation mechanisms of copper electrodeposition from ammoniacal solutions on vitreous carbon. Electrochimica Acta200550(22): 4426–4443

[16]

Schlesinger MPaunovic  M. Fundamentals of Electrochemical Deposition. Hobken: Wiley2006

[17]

Jankovic ADundar  HMehta R . Relationships between comminution energy and product size for a magnetite ore. Journal of the South African Institute of Mining and Metallurgy2010110(3): 141–146

[18]

Xiao YYang  Yvan den Berg JSietsma J Agterhuis H Visser G Bol D. Hydrometallurgical recovery of copper from complex mixtures of end-of-life shredded ICT products. Hydrometallurgy2013140: 128–134

[19]

Sun ZXiao  YSietsma J Agterhuis H Yang Y. A cleaner process for selective recovery of valuable metals from electronic waste of complex mixtures of end-of-life electronic products. Environmental Science & Technology201549(13): 7981–7988

[20]

Meng XHan  K N. The principles and applications of ammonia leaching of metals—A review. Mineral Processing and Extractive Metallurgy Review199616(1): 23–61

[21]

Birdi K. Handbook of Surface and Colloid Chemistry. Boca Raton: CRC Press2002

[22]

Majidi MAsadpour-Zeynali  KHafezi B . Reaction and nucleation mechanisms of copper electrodeposition on disposable pencil graphite electrode. Electrochimica Acta200954(3): 1119–1126

[23]

Grujicic DPesic  B. Electrodeposition of copper: The nucleation mechanisms. Electrochimica Acta200247(18): 2901–2912

[24]

Darchen ADrissi-Daoudi  RIrzho A . Electrochemical investigations of copper etching by Cu(NH3)4Cl2 in ammoniacal solutions. Journal of Applied Electrochemistry199727(4): 448–454

[25]

Khattab I AShaffei  M FShaaban  N AHussein  H SAbd El-Rehim  S S. Study the kinetics of electrochemical removal of copper from dilute solutions using packed bed electrode. Egyptian Journal of Petroleum201423(1): 93–103

[26]

Viswanatha SGeorge  S. Electrowinning of copper powder from copper sulphate solution in presence of glycerol and sulphuric acid. Indian Journal of Chemical Technology201118(1): 37–44

[27]

Zoski C G. Handbook of Electrochemistry. Amsterdam: Elsevier2006

[28]

Katayama YDan  SMiura T Kishi T . Electrochemical behavior of silver in 1-ethyl-3-methylimidazolium tetrafluoroborate molten salt. Journal of the Electrochemical Society2001148(2): C102–C105

[29]

Mahmudul H MElius  H MMamun  M AEhsan  M Q. Study of redox behavior of Cd(II) and interaction of Cd(II) with proline in the aqueous medium using cyclic voltammetry. Journal of Saudi Chemical Society201216(2): 145–151

[30]

Hinatsu JFoulkes  F. Electrochemical kinetic parameters for the cathodic deposition of copper from dilute aqueous acid sulfate solutions. Canadian Journal of Chemical Engineering199169(2): 571–577

[31]

Bard A JFaulkner  L R. Electrochemical methods: Fundamentals and applications. New York: Wiley1980

[32]

,IbañezAFatas  E. Mechanical and structural properties of electrodeposited copper and their relation with the electrodeposition parameters. Surface and Coatings Technology2005191(1): 7–16

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (331KB)

Supplementary files

FCE-16014-of-SZ_suppl_1

2481

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/