The formation and catalytic activity of silver nanoparticles in aqueous polyacrylate solutions

Jie Wang , Jianjia Liu , Xuhong Guo , Liang Yan , Stephen F. Lincoln

Front. Chem. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (3) : 432 -439.

PDF (430KB)
Front. Chem. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (3) : 432 -439. DOI: 10.1007/s11705-016-1584-0
RESEARCH ARTICLE
RESEARCH ARTICLE

The formation and catalytic activity of silver nanoparticles in aqueous polyacrylate solutions

Author information +
History +
PDF (430KB)

Abstract

Silver nanoparticles (AgNPs) have been synthesized in the presence of polyacrylate through the reduction of silver nitrate by sodium borohydride in aqueous solution. The AgNO3 and polyacrylate carboxylate group concentrations were kept constant at 2.0 × 10−4 and 1.0 × 10−2 mol∙L−1, respectively, while the ratio of [NaBH4]/[AgNO3] was varied from 1 to 100. The ultra-violet-visible plasmon resonance spectra of these solutions were found to vary with time prior to stabilizing after 27 d, consistent with changes of AgNP size and distribution within the polyacrylate ensemble occurring. These observations, together with transmission electron microscopic results, show this rearrangement to be greatest among the samples at the lower ratios of [NaBH4]/[AgNO3] used in the preparation, whereas those at the higher ratios showed a more even distribution of smaller AgNP. All ten of the AgNP samples, upon a one thousand-fold dilution, catalyze the reduction of 4-nitrophenol to 4-aminophenol in the temperature range 283.2–303.2 K with a substantial induction time being observed at the lower temperatures.

Graphical abstract

Keywords

silver nanoparticles / polyacrylates / catalysis / mechanism / sodium borohydride

Cite this article

Download citation ▾
Jie Wang, Jianjia Liu, Xuhong Guo, Liang Yan, Stephen F. Lincoln. The formation and catalytic activity of silver nanoparticles in aqueous polyacrylate solutions. Front. Chem. Sci. Eng., 2016, 10(3): 432-439 DOI:10.1007/s11705-016-1584-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Mock J J, Barbic M, Smith D R, Schultz D A, Schultz S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. Journal of Chemical Physics, 2002, 116(15): 6755–6759

[2]

Wiley B J, Im S H, Li Z, McLellan J, Siekkinen A, Xia Y. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. Journal of Physical Chemistry B, 2006, 110(32): 15666–15675

[3]

Lal S, Link S, Halas N J. Nano-optics from sensing to waveguiding. Nature Photonics, 2007, 1(11): 641–648

[4]

Xia Y, Xiong Y, Lim B, Skrabalak S E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics. Angewandte Chemie International Edition, 2009, 48(1): 60–103

[5]

Cathcart N, Frank A J, Kitaev V. Silver nanoparticles with planar twinned defects: Effect of halides for precise tuning of plasmon resonance maxima from 400 to>900 nm. Chemical Communications, 2009, 46(46): 7170–7172

[6]

Halas N J, Lal S, Chang W, Link S, Nordlander P. Plasmons in strongly coupled metallic nanostructures. Chemical Reviews, 2011, 111(6): 3913–3961

[7]

Chang W, Willingham B, Slaughter L S, Dominguez-Medina S, Swanglap P, Link S. Radiative and nonradiative properties of single plasmonic nanoparticles and their assemblies. Accounts of Chemical Research, 2012, 45(11): 1936–1945

[8]

Burda C, Chen X, Narayanan R, El-Sayed M A. Chemistry and properties of nanocrystals of different shapes. Chemical Reviews, 2005, 105(4): 1025–1102

[9]

Osborne C A, Endean T B D, Jarvo E R. Silver-catalyzed enantioselective propargylation reactions of N-sulfonylketimines. Organic Letters, 2015, 17(21): 5340–5343

[10]

Mei Y, Sharma G, Lu Y, Ballauff M, Drechsler M, Irrgang T, Kempe R. High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes. Langmuir, 2005, 21(26): 12229–12234

[11]

Köhler J, Abahmane L, Wagner J, Albert J, Mayer G. Preparation of metal nanoparticles with varied composition for catalytic applications in microreactors. Chemical Engineering Science, 2008, 63(20): 5048–5055

[12]

Wang Y, Biridar A V, Wang G, Sharma K K, Duncan C T, Rangan S, Asefa T. Controlled synthesis of water-dispersible faceted crystalline copper nanoparticles and their catalytic properties. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(35): 10735–10743

[13]

Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M. Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. Journal of Physical Chemistry C, 2010, 114(19): 8814–8820

[14]

Jia C, Schüth F. Colloidal metal nanoparticles as a component of designed catalyst. Physical Chemistry Chemical Physics, 2011, 13(7): 2457–2487

[15]

Butun S, Sahiner N. A versatile hydrogel template for metal nanoparticle preparation and their use in catalysis. Polymer, 2011, 52(21): 4834–4840

[16]

Wunder S, Lu Y, Albrecht M, Ballauff M. Catalytic activity of faceted gold nanoparticles studied by a model reaction: Evidence for substrate-induced surface restructuring. Catalysis, 2011, 1(8): 908–916

[17]

Zhu Z, Guo X, Wu S, Zhang R, Wang J, Li L. Preparation of nickel nanoparticles in spherical polyelectrolyte brush nanoreactor and their catalytic activity. Industrial & Engineering Chemistry Research, 2011, 50(24): 13848–13853

[18]

Santos K D O, Elias W C, Signori A M, Giacomelli F C, Yang H, Domingos J B. Synthesis and catalytic properties of silver nanoparticle-linear polyethylene imine colloidal systems. Journal of Physical Chemistry C, 2012, 116(7): 4594–4604

[19]

Antonels N C, Meijboom R. Preparation of well-defined dendrimer encapsulated ruthenium nanoparticles and their evaluation in the reduction of 4–nitrophenol according to the Langmuir-Hinshelwood approach. Langmuir, 2013, 29(44): 13433–13442

[20]

Liu J, Wang J, Zhu Z, Li L, Guo X, Lincoln S F, Prud’homme R K. Cooperative catalytic activity of cyclodextrin and Ag nanoparticles immobilized on spherical polyelectrolyte brushes. AIChE Journal, 2014, 60(6): 1977–1982

[21]

Kaur R, Giordino C, Gradzielski M, Metha S K. Synthesis of highly stable, water-dispersible copper nanoparticles as catalysts for nitrobenzene reduction. Chemistry, an Asian Journal, 2014, 9(1): 189–198

[22]

Cozzoli P D, Comparelli R, Fanizza E, Curri M L, Agostiano A, Laub D. Photocatalytic synthesis of AgNPs stabilized by TiO2 nanorods: A semiconductor/metal nanocomposite in homogeneous nonpolar solution. Journal of the American Chemical Society, 2004, 126(12): 3868–3879

[23]

Armelao L, Bottaro G, Campostrini R, Gialanella S, Ischia M, Poli F, Tondello E. Synthesis and structural evolution of mesoporous silica-silver nanocomposites. Nanotechnology, 2007, 18(15): 155606–155614

[24]

Xie J, Liu G, Eden H S, Ai H, Chen X. Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Accounts of Chemical Research, 2011, 44(10): 883–892

[25]

Mullen D G, Banaszak Holl M M. Heterogeneous ligand-nanoparticle distributions: A major obstacle to scientific understanding and commercial translation. Accounts of Chemical Research, 2011, 44(11): 1135–1145

[26]

Tao A R, Habas S, Yang P. Shape control of colloidal metal nanocrystals. Small, 2008, 4(3): 310–325

[27]

Bronstein L M, Shifrina Z B. Dendrimers as encapsulating, stabilizing, or directing agents for inorganic nanoparticles. Chemical Reviews, 2011, 111(9): 5301–5344

[28]

Wang T C, Rubner M F, CohenR E. Polyelectrolyte multilayer nanoreactors for preparing silver nanoparticle composites: controlling metal concentration and nanoparticle size. Langmuir, 2002, 18(8): 3370–3375

[29]

Zheng J, Stevenson M S, Hikida R S, Van Patten P G. Influence of pH on dendrimer-protected nanoparticles. Journal of Physical Chemistry B, 2002, 106(6): 1252–1255

[30]

Pillai Z S, Kamat P V. What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? Journal of Physical Chemistry B, 2004, 108(3): 945–951

[31]

Métraux G S, Mirkin C A. Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Advanced Materials, 2005, 17(4): 412–415

[32]

Wu M, Kuga S, Huang Y. Quasi-one-dimensional arrangement of silver nanoparticles templated by cellulose microfibrils. Langmuir, 2008, 24(18): 10494–10497

[33]

Dong X, Ji X, Wu H, Zhao L, Li J, Yang W. Shape control of silver nanoparticles by stepwise citrate reduction. Journal of Physical Chemistry C, 2009, 113(16): 6573–6576

[34]

Chen B, Jiao X, Chen D. Size-controlled and size-designed synthesis of nano/submicrometer Ag particles. Crystal Growth & Design, 2010, 10(8): 3378–3386

[35]

Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for gram-negative bacteria. Journal of Colloid and Interface Science, 2004, 275(1): 177–182

[36]

Morones J R, Elechiguerra J L, Camacho A, Holt K, Kouri J B, Ramirez J T, Yacaman M J. The bactericidal effect of silver nanoparticles. Nanotechnology, 2005, 16(10): 2346–2353

[37]

Cho K H, Park J E, Osaka T, Park S G. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta, 2005, 51(5): 956–960

[38]

Petica A, Gavriliu S, Lungu M, Buruntea N, Panzaru C. Colloidal silver solutions with antimicrobial properties. Materials Science and Engineering B, 2008, 152(1-3): 22–27

[39]

Gupta P, Bajpai M, Bajpai S. Investigation of antibacterial properties of silver nanoparticle-loaded poly(acrylamide-co-itaconic acid)-grafted cotton fabric. Journal of Cotton Science, 2008, 12(4): 280–286

[40]

Marambio-Jones C, Hoek E M V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 2010, 12(5): 1531–1551

[41]

Forbes G S, Cole H I. The solubility of silver chloride in dilute solutions and the existence of complex argentichloride ions. II. Journal of the American Chemical Society, 1921, 43(12): 2492–2497

[42]

Somorjai G A, Park J Y. Molecular factors of catalytic selectivity. Angewandte Chemie International Edition, 2008, 47(48): 9212–9228

[43]

Zhou X, Xu W, Liu G, Panda D, Chen P. Size-dependent catalytic activity and dynamics of gold nanoparticles at the single molecule level. Journal of the American Chemical Society, 2010, 132(1): 138–146

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (430KB)

Supplementary files

FCE-16011-of-WJ_suppl_1

2643

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/