The formation and catalytic activity of silver nanoparticles in aqueous polyacrylate solutions
Jie Wang, Jianjia Liu, Xuhong Guo, Liang Yan, Stephen F. Lincoln
The formation and catalytic activity of silver nanoparticles in aqueous polyacrylate solutions
Silver nanoparticles (AgNPs) have been synthesized in the presence of polyacrylate through the reduction of silver nitrate by sodium borohydride in aqueous solution. The AgNO3 and polyacrylate carboxylate group concentrations were kept constant at 2.0 × 10−4 and 1.0 × 10−2 mol∙L−1, respectively, while the ratio of [NaBH4]/[AgNO3] was varied from 1 to 100. The ultra-violet-visible plasmon resonance spectra of these solutions were found to vary with time prior to stabilizing after 27 d, consistent with changes of AgNP size and distribution within the polyacrylate ensemble occurring. These observations, together with transmission electron microscopic results, show this rearrangement to be greatest among the samples at the lower ratios of [NaBH4]/[AgNO3] used in the preparation, whereas those at the higher ratios showed a more even distribution of smaller AgNP. All ten of the AgNP samples, upon a one thousand-fold dilution, catalyze the reduction of 4-nitrophenol to 4-aminophenol in the temperature range 283.2–303.2 K with a substantial induction time being observed at the lower temperatures.
silver nanoparticles / polyacrylates / catalysis / mechanism / sodium borohydride
[1] |
Mock J J, Barbic M, Smith D R, Schultz D A, Schultz S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. Journal of Chemical Physics, 2002, 116(15): 6755–6759
CrossRef
Google scholar
|
[2] |
Wiley B J, Im S H, Li Z, McLellan J, Siekkinen A, Xia Y. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. Journal of Physical Chemistry B, 2006, 110(32): 15666–15675
CrossRef
Google scholar
|
[3] |
Lal S, Link S, Halas N J. Nano-optics from sensing to waveguiding. Nature Photonics, 2007, 1(11): 641–648
CrossRef
Google scholar
|
[4] |
Xia Y, Xiong Y, Lim B, Skrabalak S E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics. Angewandte Chemie International Edition, 2009, 48(1): 60–103
CrossRef
Google scholar
|
[5] |
Cathcart N, Frank A J, Kitaev V. Silver nanoparticles with planar twinned defects: Effect of halides for precise tuning of plasmon resonance maxima from 400 to>900 nm. Chemical Communications, 2009, 46(46): 7170–7172
CrossRef
Google scholar
|
[6] |
Halas N J, Lal S, Chang W, Link S, Nordlander P. Plasmons in strongly coupled metallic nanostructures. Chemical Reviews, 2011, 111(6): 3913–3961
CrossRef
Google scholar
|
[7] |
Chang W, Willingham B, Slaughter L S, Dominguez-Medina S, Swanglap P, Link S. Radiative and nonradiative properties of single plasmonic nanoparticles and their assemblies. Accounts of Chemical Research, 2012, 45(11): 1936–1945
CrossRef
Google scholar
|
[8] |
Burda C, Chen X, Narayanan R, El-Sayed M A. Chemistry and properties of nanocrystals of different shapes. Chemical Reviews, 2005, 105(4): 1025–1102
CrossRef
Google scholar
|
[9] |
Osborne C A, Endean T B D, Jarvo E R. Silver-catalyzed enantioselective propargylation reactions of N-sulfonylketimines. Organic Letters, 2015, 17(21): 5340–5343
CrossRef
Google scholar
|
[10] |
Mei Y, Sharma G, Lu Y, Ballauff M, Drechsler M, Irrgang T, Kempe R. High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes. Langmuir, 2005, 21(26): 12229–12234
CrossRef
Google scholar
|
[11] |
Köhler J, Abahmane L, Wagner J, Albert J, Mayer G. Preparation of metal nanoparticles with varied composition for catalytic applications in microreactors. Chemical Engineering Science, 2008, 63(20): 5048–5055
CrossRef
Google scholar
|
[12] |
Wang Y, Biridar A V, Wang G, Sharma K K, Duncan C T, Rangan S, Asefa T. Controlled synthesis of water-dispersible faceted crystalline copper nanoparticles and their catalytic properties. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(35): 10735–10743
CrossRef
Google scholar
|
[13] |
Wunder S, Polzer F, Lu Y, Mei Y, Ballauff M. Kinetic analysis of catalytic reduction of 4-nitrophenol by metallic nanoparticles immobilized in spherical polyelectrolyte brushes. Journal of Physical Chemistry C, 2010, 114(19): 8814–8820
CrossRef
Google scholar
|
[14] |
Jia C, Schüth F. Colloidal metal nanoparticles as a component of designed catalyst. Physical Chemistry Chemical Physics, 2011, 13(7): 2457–2487
CrossRef
Google scholar
|
[15] |
Butun S, Sahiner N. A versatile hydrogel template for metal nanoparticle preparation and their use in catalysis. Polymer, 2011, 52(21): 4834–4840
CrossRef
Google scholar
|
[16] |
Wunder S, Lu Y, Albrecht M, Ballauff M. Catalytic activity of faceted gold nanoparticles studied by a model reaction: Evidence for substrate-induced surface restructuring. Catalysis, 2011, 1(8): 908–916
|
[17] |
Zhu Z, Guo X, Wu S, Zhang R, Wang J, Li L. Preparation of nickel nanoparticles in spherical polyelectrolyte brush nanoreactor and their catalytic activity. Industrial & Engineering Chemistry Research, 2011, 50(24): 13848–13853
CrossRef
Google scholar
|
[18] |
Santos K D O, Elias W C, Signori A M, Giacomelli F C, Yang H, Domingos J B. Synthesis and catalytic properties of silver nanoparticle-linear polyethylene imine colloidal systems. Journal of Physical Chemistry C, 2012, 116(7): 4594–4604
CrossRef
Google scholar
|
[19] |
Antonels N C, Meijboom R. Preparation of well-defined dendrimer encapsulated ruthenium nanoparticles and their evaluation in the reduction of 4–nitrophenol according to the Langmuir-Hinshelwood approach. Langmuir, 2013, 29(44): 13433–13442
CrossRef
Google scholar
|
[20] |
Liu J, Wang J, Zhu Z, Li L, Guo X, Lincoln S F, Prud’homme R K. Cooperative catalytic activity of cyclodextrin and Ag nanoparticles immobilized on spherical polyelectrolyte brushes. AIChE Journal, 2014, 60(6): 1977–1982
CrossRef
Google scholar
|
[21] |
Kaur R, Giordino C, Gradzielski M, Metha S K. Synthesis of highly stable, water-dispersible copper nanoparticles as catalysts for nitrobenzene reduction. Chemistry, an Asian Journal, 2014, 9(1): 189–198
CrossRef
Google scholar
|
[22] |
Cozzoli P D, Comparelli R, Fanizza E, Curri M L, Agostiano A, Laub D. Photocatalytic synthesis of AgNPs stabilized by TiO2 nanorods: A semiconductor/metal nanocomposite in homogeneous nonpolar solution. Journal of the American Chemical Society, 2004, 126(12): 3868–3879
CrossRef
Google scholar
|
[23] |
Armelao L, Bottaro G, Campostrini R, Gialanella S, Ischia M, Poli F, Tondello E. Synthesis and structural evolution of mesoporous silica-silver nanocomposites. Nanotechnology, 2007, 18(15): 155606–155614
CrossRef
Google scholar
|
[24] |
Xie J, Liu G, Eden H S, Ai H, Chen X. Surface-engineered magnetic nanoparticle platforms for cancer imaging and therapy. Accounts of Chemical Research, 2011, 44(10): 883–892
CrossRef
Google scholar
|
[25] |
Mullen D G, Banaszak Holl M M. Heterogeneous ligand-nanoparticle distributions: A major obstacle to scientific understanding and commercial translation. Accounts of Chemical Research, 2011, 44(11): 1135–1145
CrossRef
Google scholar
|
[26] |
Tao A R, Habas S, Yang P. Shape control of colloidal metal nanocrystals. Small, 2008, 4(3): 310–325
CrossRef
Google scholar
|
[27] |
Bronstein L M, Shifrina Z B. Dendrimers as encapsulating, stabilizing, or directing agents for inorganic nanoparticles. Chemical Reviews, 2011, 111(9): 5301–5344
CrossRef
Google scholar
|
[28] |
Wang T C, Rubner M F, CohenR E. Polyelectrolyte multilayer nanoreactors for preparing silver nanoparticle composites: controlling metal concentration and nanoparticle size. Langmuir, 2002, 18(8): 3370–3375
CrossRef
Google scholar
|
[29] |
Zheng J, Stevenson M S, Hikida R S, Van Patten P G. Influence of pH on dendrimer-protected nanoparticles. Journal of Physical Chemistry B, 2002, 106(6): 1252–1255
CrossRef
Google scholar
|
[30] |
Pillai Z S, Kamat P V. What factors control the size and shape of silver nanoparticles in the citrate ion reduction method? Journal of Physical Chemistry B, 2004, 108(3): 945–951
CrossRef
Google scholar
|
[31] |
Métraux G S, Mirkin C A. Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Advanced Materials, 2005, 17(4): 412–415
CrossRef
Google scholar
|
[32] |
Wu M, Kuga S, Huang Y. Quasi-one-dimensional arrangement of silver nanoparticles templated by cellulose microfibrils. Langmuir, 2008, 24(18): 10494–10497
CrossRef
Google scholar
|
[33] |
Dong X, Ji X, Wu H, Zhao L, Li J, Yang W. Shape control of silver nanoparticles by stepwise citrate reduction. Journal of Physical Chemistry C, 2009, 113(16): 6573–6576
CrossRef
Google scholar
|
[34] |
Chen B, Jiao X, Chen D. Size-controlled and size-designed synthesis of nano/submicrometer Ag particles. Crystal Growth & Design, 2010, 10(8): 3378–3386
CrossRef
Google scholar
|
[35] |
Sondi I, Salopek-Sondi B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for gram-negative bacteria. Journal of Colloid and Interface Science, 2004, 275(1): 177–182
CrossRef
Google scholar
|
[36] |
Morones J R, Elechiguerra J L, Camacho A, Holt K, Kouri J B, Ramirez J T, Yacaman M J. The bactericidal effect of silver nanoparticles. Nanotechnology, 2005, 16(10): 2346–2353
CrossRef
Google scholar
|
[37] |
Cho K H, Park J E, Osaka T, Park S G. The study of antimicrobial activity and preservative effects of nanosilver ingredient. Electrochimica Acta, 2005, 51(5): 956–960
CrossRef
Google scholar
|
[38] |
Petica A, Gavriliu S, Lungu M, Buruntea N, Panzaru C. Colloidal silver solutions with antimicrobial properties. Materials Science and Engineering B, 2008, 152(1-3): 22–27
CrossRef
Google scholar
|
[39] |
Gupta P, Bajpai M, Bajpai S. Investigation of antibacterial properties of silver nanoparticle-loaded poly(acrylamide-co-itaconic acid)-grafted cotton fabric. Journal of Cotton Science, 2008, 12(4): 280–286
|
[40] |
Marambio-Jones C, Hoek E M V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. Journal of Nanoparticle Research, 2010, 12(5): 1531–1551
CrossRef
Google scholar
|
[41] |
Forbes G S, Cole H I. The solubility of silver chloride in dilute solutions and the existence of complex argentichloride ions. II. Journal of the American Chemical Society, 1921, 43(12): 2492–2497
CrossRef
Google scholar
|
[42] |
Somorjai G A, Park J Y. Molecular factors of catalytic selectivity. Angewandte Chemie International Edition, 2008, 47(48): 9212–9228
CrossRef
Google scholar
|
[43] |
Zhou X, Xu W, Liu G, Panda D, Chen P. Size-dependent catalytic activity and dynamics of gold nanoparticles at the single molecule level. Journal of the American Chemical Society, 2010, 132(1): 138–146
CrossRef
Google scholar
|
/
〈 | 〉 |