Polymeric micelle nanocarriers in cancer research

Dae Hwan Shin, Yu Tong Tam, Glen S. Kwon

PDF(457 KB)
PDF(457 KB)
Front. Chem. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (3) : 348-359. DOI: 10.1007/s11705-016-1582-2
REVIEW ARTICLE
REVIEW ARTICLE

Polymeric micelle nanocarriers in cancer research

Author information +
History +

Abstract

Amphiphilic block copolymers (ABCs) assemble into a spherical nanoscopic supramolecular core/shell nanostructure termed a polymeric micelle that has been widely researched as an injectable nanocarrier for poorly water-soluble anticancer agents. The aim of this review article is to update progress in the field of drug delivery towards clinical trials, highlighting advances in polymeric micelles used for drug solubilization, reduced off-target toxicity and tumor targeting by the enhanced permeability and retention (EPR) effect. Polymeric micelles vary in stability in blood and drug release rate, and accordingly play different but key roles in drug delivery. For intravenous (IV) infusion, polymeric micelles that disassemble in blood and rapidly release poorly water-soluble anticancer agent such as paclitaxel have been used for drug solubilization, safety and the distinct possibility of toxicity reduction relative to existing solubilizing agents, e.g., Cremophor EL. Stable polymeric micelles are long-circulating in blood and reduce distribution to non-target tissue, lowering off-target toxicity. Further, they participate in the EPR effect in murine tumor models. In summary, polymeric micelles act as injectable nanocarriers for poorly water-soluble anticancer agents, achieving reduced toxicity and targeting tumors by the EPR effect.

Graphical abstract

Keywords

nanomedicine / parenteral / poly(ethylene glycol) / poly(lactic acid) / reformulation

Cite this article

Download citation ▾
Dae Hwan Shin, Yu Tong Tam, Glen S. Kwon. Polymeric micelle nanocarriers in cancer research. Front. Chem. Sci. Eng., 2016, 10(3): 348‒359 https://doi.org/10.1007/s11705-016-1582-2

References

[1]
Chen W, Zheng R, Baade P, Zhang S, Zeng H, Bray F, Jemal A, Yu X, He J. Cancer statistics in China, 2015. CA: a Cancer Journal for Clinicians, 2016, 16(2): 115–132
CrossRef Google scholar
[2]
Mehlen P, Puisieux A. Metastasis: A question of life or death. Nature Reviews. Cancer, 2006, 6(6): 449–458
CrossRef Google scholar
[3]
Creixell P, Schoof E, Erler J, Linding R. Navigating cancer network attractors for tumor-specific therapy. Nature Biotechnology, 2012, 30(9): 842–848
CrossRef Google scholar
[4]
Xu X, Ho W, Zhang X, Betrand N, Farokhzad O. Cancer nanomedicine: From targeted delivery to combination therapy. Trends in Molecular Medicine, 2015, 21(4): 223–232
CrossRef Google scholar
[5]
Hamilton G. Antibody-drug conjugates for cancer therapy: The technological and regulatory challenges of developing drug-biologic hybrids. Biologicals, 2015, 43(5): 318–332
CrossRef Google scholar
[6]
Peer D, Karp J, Hong S, Farokhzad O, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nature Nanotechnology, 2007, 2(12): 751–760
CrossRef Google scholar
[7]
Deng C, Jiang Y, Cheng R, Meng F, Zhong Z. Biodegradable polymeric micelles for targeted and controlled anticancer drug delivery: Promises, progress and prospects. Nano Today, 2012, 7(5): 467–480
CrossRef Google scholar
[8]
Gong J, Chen M, Zheng Y, Wang S, Wang Y. Polymeric micelles drug delivery system in oncology. Journal of Controlled Release, 2012, 159(3): 312–323
CrossRef Google scholar
[9]
Matsumura Y. The drug discovery by nanomedicine and its clinical experience. Japanese Journal of Clinical Oncology, 2014, 44(6): 515–525
CrossRef Google scholar
[10]
Eetezadi S, Ekdawi S, Allen C. The challenges facing block copolymer micelles for cancer therapy: In vivo barriers and clinical translation. Advanced Drug Delivery Reviews, 2015, 91(8): 7–22
CrossRef Google scholar
[11]
Nishiyama N. Nanocarriers shape up for long life. Nature Nanotechnology, 2007, 2(4): 203–204
CrossRef Google scholar
[12]
Suk J, Xu Q, Kim N, Hanes J, Ensign L. Pegylation as a strategy for improving nanoparticle-based drug and gene delivery. Advanced Drug Delivery Reviews, 2016, 99(Pt A): 28–51
[13]
Gelderblom H, Verweij J, Nooter K, Sparreboom A. Cremophorel: The drawbacks and advantages of vehicle selection for drug formulation. European Journal of Cancer, 2001, 37(13): 159–198
[14]
Banerji U, Walton M, Raynaud F, Grimshaw R, Kelland L, Valenti M, Judson I, Workman P. Pharmacokinetic-pharmacodynamic relationships for the heat shock protein 90 molecular chaperone inhibitor 17-allyamino, 17-demethoxygeldanamycin in human ovarian cancer xenograft model. Clinical Cancer Research, 2005, 11(19): 7023–7032
CrossRef Google scholar
[15]
Blois J, Smith A, Josephson L. The slow death response when screening chemotherapeutic agents. Cancer Chemotherapy and Pharmacology, 2011, 68(3): 795–803
CrossRef Google scholar
[16]
Stirland D, Nichols J, Miura S, Bae Y. Mind the gap: A survey of how cancer drug carriers are susceptible to the gap between research and practice. Journal of Controlled Release, 2013, 172(3): 1045–1064
CrossRef Google scholar
[17]
Cabral H, Matsumoto Y, Mizuno K, Chen Q, Murakami M, Kimura M, Terada Y, Kano M, Miyazono K, Uesaka M, Nishiyama N, Kataoka K. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nature Nanotechnology, 2011, 6(12): 815–823
CrossRef Google scholar
[18]
Kim S, Kim D, Shim Y, Bang J, Oh H, Kim S, Seo M. In vivo evaluation of polymeric micellar paclitaxel formulation: Toxicity and efficacy. Journal of Controlled Release, 2001, 72(1-3): 191–202
CrossRef Google scholar
[19]
Cho H, Gao J, Kwon G. PEG-b-PLA micelles and PLGA-b-PEG-b-PLGA sol-gels for drug delivery. Journal of Controlled Release, 2015, doi: 10.1016/j.jconrel.2015.12.015
[20]
Kim T, Kim D, Chung J, Shin S, Kim S, Heo D, Kim N, Bang Y. Phase I and pharmacokinetics study of genexol-pm, a cremophor-free, polymeric micelle-formulated paclitaxel, in patients with advanced malignancies. Clinical Cancer Research, 2004, 10(11): 3708–3716
CrossRef Google scholar
[21]
Kundranda M, Niu J. Albumin-bound paclitaxel in solid tumors: Clinical development and future directions. Drug Design, Development and Therapy, 2015, 9(6): 3767–3777
CrossRef Google scholar
[22]
Desai N, De T, Ci S, Louie L, Trieu V. Characterization and in vitro/in vivo dissolution of nab-paclitaxel nanoparticles. Cancer Research, 2005, 11(5): 5624
[23]
Perego P, Cossa G, Zuco V, Zunino F. Modulation of cell sensitivity to antitumor agents by targeting survival pathways. Biochemical Pharmacology, 2010, 80(10): 1459–1465
CrossRef Google scholar
[24]
Woodcock J, Griffin J, Behrman R. Development of novel combination therapies. New England Journal of Medicine, 2011, 364(11): 985–987
CrossRef Google scholar
[25]
Ramalingam S, Egorin M, Ramanathan R, Remick S, Sikorski R, Lagattuta T, Chatta G, Friedland D, Stoller R, Potter D, Ivy S, Belani C. A phase I study of 17-allylamino-17-demethoxygeldanamycin combined with paclitaxel in patients with advanced solid malignancies. Clinical Cancer Research, 2008, 14(11): 3456–3461
CrossRef Google scholar
[26]
O’Reilly T, McSheehy P, Wartmann M, Lassota P, Brandt R, Lane H. Evaluation of the mtor inhibitor, everolimus, in combination with antitumor agents using human tumor models in vitro and in vivo. Anti-Cancer Drugs, 2011, 22(1): 58–78
CrossRef Google scholar
[27]
Solit D, Basso A, Olshen A, Scher H, Rosen N. Inhibition of heat shock protein 90 function down-regulates akt kinase and sensitizes tumors to taxol. Cancer Research, 2003, 63(9): 2139–2144
[28]
Hurvitz S, Andre F, Jiang Z, Shao Z, Mano M, Neciosup S, Tseng L, Zhang Q, Shen K, Liu D, Dreosti L, Burris H, Toi M, Buyse M, Cabaribere D, Lindsay M, Rao S, Pacaud L, Taran T, Slamon D. Combination of everolimus with trastuzumab plus paclitaxel as first-line treatment for patients with her2-positive advanced breast cancer (bolero-1): A phase 3, randomized, double-blind, multicentre trial. Lancet Oncology, 2015, 16(7): 816–829
CrossRef Google scholar
[29]
Stoeltzing O. Dual-targeting of mtor and hsp90 for cancer therapy: Facing oncogenic feed-back-loops and acquired mTOR resistance. Cell Cycle (Georgetown, Tex.), 2010, 9(11): 2051–2052
CrossRef Google scholar
[30]
Shin H, Alani A, Cho H, Bae Y, Kolesar J, Kwon G. A 3-in-1 polymeric micelle nanocontainer for poorly water-soluble drugs. Molecular Pharmaceutics, 2011, 8(4): 1257–1265
CrossRef Google scholar
[31]
Hasenstein J, Shin H, Kasmerchak K, Buehler D, Kwon G, Kozak K. Antitumor activity of triolimus: A novel multi-drug-loaded micelle containing paclitaxel, rapamycin and 17-aag. Molecular Cancer Therapeutics, 2012, 11(1): 1–10
[32]
Shin H, Cho H, Lai T, Kozak K, Kolesar J, Kwon G. Pharmacokinetic study of 3-in-1 poly(ethylene glycol)-block-poly(<?A3B2 th=7pt?>D,L<?A3B2 th?>-lactic acid) micelles carrying paclitaxel, 17-allylamino-17-demethoxygeldanamycin, and rapamycin. Journal of Controlled Release, 2012, 163(1): 93–99
CrossRef Google scholar
[33]
Yokoyama M, Okano T, Sakurai Y, Fukushima S, Okamoto K, Kataoka K. Selective delivery of adriamycin to a solid tumor using a polymeric micelle carrier system. Journal of Drug Targeting, 1999, 7(3): 171–186
CrossRef Google scholar
[34]
Matsumura Y, Hamaguchi T, Ura T, Muro K, Yamada Y, Shimada Y, Shiro K, Okusaka T, Ueno H, Ikeda M, Watanabe N. Phase I clinical trial and pharmacokinetic evaluation of nk911, a micelle-encapsulated doxorubicin. British Journal of Cancer, 2004, 91(10): 1775–1781
CrossRef Google scholar
[35]
Liu J, Zeng F, Allen C. In vivo fate of unimers and micelles of a poly(ethylene glycol)-block-poly(caprolactone) copolymer in mice following intravenous administration. European Journal of Pharmaceutics and Biopharmaceutics, 2007, 65(3): 309–319
CrossRef Google scholar
[36]
Montazeri Aliabadi H, Brocks D R, Lavasanifar A. Polymeric micelles for the solubilization and delivery of cyclosporine A: Pharmacokinetics and biodistribution. Biomaterials, 2005, 26(35): 7251–7259
CrossRef Google scholar
[37]
Aliabadi H, Elhasi S, Brocks D, Lavasanifar A. Polymeric micellar delivery reduces kidney distribution and nephrotoxic effects of cyclosporine after multiple dosing. Journal of Pharmaceutical Sciences, 2008, 97(5): 1916–1926
CrossRef Google scholar
[38]
Binkhathlan Z, Hamdy D A, Brocks D R, Lavanifar A. Development of a polymeric micelle formulation for valspodar and assessment of its pharmacokinetics in rat. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 75(2): 90–95
CrossRef Google scholar
[39]
Matsumura M, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanisms of tumoritropic accumulation of proteins and the anticancer agent smancs. Cancer Research, 1986, 46(12 Pt 1): 6387–6392
[40]
Hamaguchi T, Matsumura Y, Suzuki M, Shimizu K, Goda R, Nakamura I, Nakatomi I, Yokoyama M, Kataoka K, Kakizoe T. Nk105, a paclitaxel-incorporating micellar nanoparticle formulation can extend in vivo antitumor activity and reduce the neurotoxicity of paclitaxel. British Journal of Cancer, 2005, 92(7): 1240–1246
CrossRef Google scholar
[41]
Kato K, Chin K, Yoshikawa T, Yamaguchi K, Tsuji Y, Esaki T, Sakai K, Kimura M, Hamaguchi T, Shimada Y, Matsumura Y, Ikeda R. Phase II study of nk105, a paclitaxel-incorporating micellar nanoparticle, for previously treated advanced or recurrent gastric cancer. Investigational New Drugs, 2012, 30(4): 1621–1627
CrossRef Google scholar
[42]
Bae Y, Fukushima S, Harada A, Kataoka K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular ph change. Angewandte Chemie International Edition, 2003, 42(38): 4640–4643
CrossRef Google scholar
[43]
Bae Y, Hishiyama N, Fukushima S, Koyama H, Yosuhiro M, Kataoka K. Preparation and biological characterization of polymeric micelles drug carriers with intracellular pH-triggered drug release property: Tumor permeability, controlled subcellular drug distribution, and enhanced in vivo antitumor efficacy. Bioconjugate Chemistry, 2005, 16(1): 122–130
CrossRef Google scholar
[44]
Harada M, Bobe J, Saito H, Shibata N, Tanaka R, Hayashi T, Kato Y. Improved anti-tumor activity of stabilized anthracycline polymeric micelle formulation, nc-6300. Cancer Science, 2011, 102(1): 1192–1199
CrossRef Google scholar
[45]
Wei C, Guo J, Wang C. Dual stimuli-responsive polymeric micelles exhibiting “and” logic gate for controlled release of adriamycin. Macromolecular Rapid Communications, 2011, 32(5): 451–455
CrossRef Google scholar
[46]
Lai T, Cho H, Kwon G. Reversibly core-cross-linked polymeric micelles with ph-and reduction-sensitivities: Effects of cross-linking degree on particle stability, drug release kinetics and anti-tumor efficacy. Polymer Chemistry, 2014, 5(5): 1650–1661
CrossRef Google scholar
[47]
Bae Y, Diezi T, Zhao A, Kwon G. Mixed polymeric micelles for combination cancer chemotherapy through concurrent delivery of multiple chemotherapeutic agents. Journal of Controlled Release, 2007, 122(3): 324–330
CrossRef Google scholar
[48]
Torchilin V P. Targeted polymeric micelles for delivery of poorly soluble drugs. Cellular and Molecular Life Sciences, 2004, 61(19): 2549–2559
CrossRef Google scholar
Funding
 

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(457 KB)

Accesses

Citations

Detail

Sections
Recommended

/