Validation of polarizable force field parameters for nucleic acids by inter-molecular interactions

Liaoran Cao, Hong Ren, Jing Miao, Wei Guo, Yan Li, Guohui Li

PDF(1454 KB)
PDF(1454 KB)
Front. Chem. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (2) : 203-212. DOI: 10.1007/s11705-016-1572-4
RESEARCH ARTICLE
RESEARCH ARTICLE

Validation of polarizable force field parameters for nucleic acids by inter-molecular interactions

Author information +
History +

Abstract

Modeling structural and thermodynamic properties of nucleic acids has long been a challenge in the development of force fields. Polarizable force fields are a new generation of potential functions to take charge redistribution and induced dipole into account, and have been proved to be reliable to model small molecules, polypeptides and proteins, but their use on nucleic acids is still rather limited. In this article, the interactions between nucleic acids and a small molecule or ion were modeled by AMOEBAbio09, a modern polarizable force field, and conventional non-polarizable AMBER99sb and CHARMM36 force fields. The resulting intermolecular interaction energies were compared with those calculated by ab initio quantum mechanics methods. Although the test is not sufficient to prove the reliability of the polarizable force field, the results at least validate its capability in modeling energetics of static configurations, which is one basic component in force field parameterization.

Graphical abstract

Keywords

nucleic acid / polarizable force field / AMOEBA

Cite this article

Download citation ▾
Liaoran Cao, Hong Ren, Jing Miao, Wei Guo, Yan Li, Guohui Li. Validation of polarizable force field parameters for nucleic acids by inter-molecular interactions. Front. Chem. Sci. Eng., 2016, 10(2): 203‒212 https://doi.org/10.1007/s11705-016-1572-4

References

[1]
Kumar G S, Maiti M. DNA polymorphism under the influence of low pH and low-temperature. Journal of Biomolecular Structure & Dynamics, 1994, 12(1): 183–201
CrossRef Google scholar
[2]
Ali N, Ali R. High salt and solvent induced Z-conformation in native calf thymus DNA. Biochemistry and Molecular Biology International, 1997, 41: 1227–1235
[3]
Jones S, van Heyningen P, Berman H M, Thornton J M. Protein-DNA interactions: A structural analysis. Journal of Molecular Biology, 1999, 287(5): 877–896
CrossRef Google scholar
[4]
Reinert K E. DNA multimode interaction with berenil and pentamidine; Double helix stiffening, unbending and bending. Journal of Biomolecular Structure & Dynamics, 1999, 17(2): 311–331
CrossRef Google scholar
[5]
Levitt M. Computer-simulation of DNA double-helix dynamics. Cold Spring Harbor Symposia on Quantitative Biology, 1983, 47: 251–262
CrossRef Google scholar
[6]
Tidor B, Irikura K K, Brooks B R, Karplus M. Dynamics of DNA oligomers. Journal of Biomolecular Structure & Dynamics, 1983, 1(1): 231–252
CrossRef Google scholar
[7]
Condon D E, Yildirim I, Kennedy S D, Mort B C, Kierzek R, Turner D H. Optimization of an AMBER force field for the artificial nucleic acid, LNA, and benchmarking with NMR of L(CAAU). Journal of Physical Chemistry B, 2014, 118(5): 1216–1228
CrossRef Google scholar
[8]
Perez A, Marchan I, Svozil D, Sponer J, Cheatham T E 3rd, Laughton C A, Orozco M. Refinement of the AMBER force field for nucleic acids: Improving the description of alpha/gamma conformers. Biophysical Journal, 2007, 92(11): 3817–3829
CrossRef Google scholar
[9]
Soares T A, Hunenberger P H, Kastenholz M A, Krautler V, Lenz T, Lins R D, Oostenbrink C, Van Gunsteren W F. An improved nucleic acid parameter set for the GROMOS force field. Journal of Computational Chemistry, 2005, 26(7): 725–737
CrossRef Google scholar
[10]
Hart K, Foloppe N, Baker C M, Denning E J, Nilsson L, MacKerell A D Jr. Optimization of the CHARMM additive force field for DNA: Improved treatment of the BI/BII conformational equilibrium. Journal of Chemical Theory and Computation, 2012, 8(1): 348–362
CrossRef Google scholar
[11]
Langley D R. Environmentally dependent molecular dynamic simulations of DNA using the BMS nucleic acid force field. Abstracts of Papers of the American Chemical Society, 1997, 213: 135
[12]
Langley D R. Molecular dynamic simulations of environment and sequence dependent DNA conformations: The development of the BMS nucleic acid force field and comparison with experimental results. Journal of Biomolecular Structure & Dynamics, 1998, 16(3): 487–509
CrossRef Google scholar
[13]
Anisimov V M, Lopes P E M, MacKerell A D. COMP 382-classical CHARMM drude oscillator polarizable force field for nucleic acid bases. Abstracts of Papers of the American Chemical Society, 2007, 234
[14]
Baker C M, Anisimov V M, MacKerell A D Jr. Development of CHARMM polarizable force field for nucleic acid bases based on the classical drude oscillator model. Journal of Physical Chemistry B, 2011, 115(3): 580–596
CrossRef Google scholar
[15]
Rick S W, Stuart S J. Potentials and algorithms for incorporating polarizability in computer simulations. Reviews in Computational Chemistry, 2002, 18: 89–146
[16]
Ren P Y, Ponder J W. Polarizable atomic multipole water model for molecular mechanics simulation. Journal of Physical Chemistry B, 2003, 107(24): 5933–5947
CrossRef Google scholar
[17]
Ren P Y, Ponder J W. Temperature and pressure dependence of the AMOEBA water model. Journal of Physical Chemistry B, 2004, 108(35): 13427–13437
CrossRef Google scholar
[18]
Shi Y, Xia Z, Zhang J, Best R, Wu C, Ponder J W, Ren P. The polarizable atomic multipole-based AMOEBA force field for proteins. Journal of Chemical Theory and Computation, 2013, 9(9): 4046–4063
CrossRef Google scholar
[19]
Case D A, Berryman J T, Betz R M, Cerutti D S, Cheatham T E, Darden III T A, Duke R E, Giese T J, Gohlke H, Goetz A W, Homeyer N, Izadi S, Janowski P, Kaus J, Kovalenko A, Lee T S, LeGrand S, Li P, Luchko T, Luo R, Madej B, Merz K M, Monard G, Needham P, Nguyen H, Nguyen H T, Omelyan I, Onufriev A, Roe D R, Roitberg A, Salomon-Ferrer R, Simmerling C L, Smith W, Swails J, Walker R C, Wang J, Wolf R M, Wu X, York D M, Kollman P A. AMBER 2015, University of California, San Francisco
[20]
PetaChem. http://www.petachem.com (accessed on <Date>12 Jan, 2015</Date>)
[21]
Gaussian 09. Wallingford, CT, USA: Gaussian, Inc., 2009
[22]
Best R B, Zhu X, Shim J, Lopes P E M, Mittal J, Feig M, MacKerell A D Jr. Optimization of the additive CHARMM all-atom protein force field targeting improved sampling of the backbone phi, psi and side-chain chi(1) and chi(2) dihedral angles. Journal of Chemical Theory and Computation, 2012, 8(9): 3257–3273
CrossRef Google scholar
[23]
Wang J M, Wolf R M, Caldwell J W, Kollman P A, Case D A. Development and testing of a general amber force field. Journal of Computational Chemistry, 2004, 25(9): 1157–1174
CrossRef Google scholar
[24]
Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, MacKerell A D. CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 2010, 31: 671–690
[25]
Yu W B, He X B, Vanommeslaeghe K, MacKerell A D Jr. Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. Journal of Computational Chemistry, 2012, 33(31): 2451–2468
CrossRef Google scholar
[26]
Phillips J C, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel R D, Kale L, Schulten K. Scalable molecular dynamics with NAMD. Journal of Computational Chemistry, 2005, 26(16): 1781–1802
CrossRef Google scholar
[27]
Izvekov S, Parrinello M, Burnham C J, Voth G A. Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: A new method for force-matching. Journal of Chemical Physics, 2004, 120(23): 10896–10913
CrossRef Google scholar
[28]
Akin-Ojo O, Song Y, Wang F. Developing ab initio quality force fields from condensed phase quantum-mechanics/molecular-mechanics calculations through the adaptive force matching method. Journal of Chemical Physics, 2008, 129(6):  064108
[29]
Wang L P, Chen J H, Van TVoorhis. Systematic parametrization of polarizable force fields from quantum chemistry data. Journal of Chemical Theory and Computation, 2013, 9(1): 452–460
CrossRef Google scholar
[30]
Laury M L, Wang L P, Pande V S, Head-Gordon T, Ponder J W. Revised parameters for the AMOEBA polarizable atomic multipole water model. Journal of Physical Chemistry B, 2015, 119(29): 9423–9437
CrossRef Google scholar
[31]
Mackerell A D, Wiorkiewiczkuczera J, Karplus M. An all-atom empirical energy function for the simulation of nucleic-acids. Journal of the American Chemical Society, 1995, 117(48): 11946–11975
CrossRef Google scholar
[32]
MacKerell A D, Banavali N, Foloppe N. Development and current status of the CHARMM force field for nucleic acids. Biopolymers, 2001, 56(4): 257–265
CrossRef Google scholar
[33]
Cornell W D, Cieplak P, Bayly C I, Gould I R, Merz K M, Ferguson D M, Spellmeyer D C, Fox T, Caldwell J W, Kollman P A. A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 1996, 118(9): 2309–2309
CrossRef Google scholar
[34]
Badawi H M, Forner W, Al-Saadi A A. DFT-B3LYP versus MP2, MP3 and MP4 calculations of the structural stability of azidoketene O=C=CH‒NNN. Journal of Molecular Structure THEOCHEM, 2004, 712(1-3): 131–138
CrossRef Google scholar
[35]
Badawi H M. MP2, MP3 and MP4 versus DFT-B3LYP energies and vibrational assignments of near-planar carbamoyl azide and ketene. Journal of Molecular Structure, 2008, 888(1-3): 379–385
CrossRef Google scholar
[36]
Neese F. The ORCA program system. Wiley Interdisciplinary Reviews. Computational Molecular Science, 2012, 2(1): 73–78
CrossRef Google scholar

Acknowledgements

This work was financially supported by the National Nature Science Foundation of China (Grant Nos. 21573217, 31370714, and 91430110).

Electronic Supplementary Material

Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s11705-016-1572-4 and is accessible for authorized users.

RIGHTS & PERMISSIONS

2016 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1454 KB)

Accesses

Citations

Detail

Sections
Recommended

/