Formation of microporous polymeric membranes via thermally induced phase separation: A review

Min Liu, Shenghui Liu, Zhenliang Xu, Yongming Wei, Hu Yang

PDF(1239 KB)
PDF(1239 KB)
Front. Chem. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (1) : 57-75. DOI: 10.1007/s11705-016-1561-7
REVIEW ARTICLE
REVIEW ARTICLE

Formation of microporous polymeric membranes via thermally induced phase separation: A review

Author information +
History +

Abstract

A review of recent research related to microporous polymeric membranes formed via thermally induced phase separation (TIPS) and the morphologies of these membranes is presented. A summary of polymers and suitable diluents that can be used to prepare these microporous membranes via TIPS are summarized. The effects of different kinds of polymer materials, diluent types, cooling conditions, extractants and additive agents on the morphology and performance of TIPS membranes are also discussed. Finally new developments in TIPS technology are summarized.

Graphical abstract

Keywords

polymer / microporous membrane / thermally induced phase separation

Cite this article

Download citation ▾
Min Liu, Shenghui Liu, Zhenliang Xu, Yongming Wei, Hu Yang. Formation of microporous polymeric membranes via thermally induced phase separation: A review. Front. Chem. Sci. Eng., 2016, 10(1): 57‒75 https://doi.org/10.1007/s11705-016-1561-7

References

[1]
Castro A J. Methods for making microporous products. US Patent, 4247498, 1981
[2]
Lloyd D R, Kinzer K E, Tseng H S. Microporous membrane formation via thermally induced phase separation. I. Solid-liquid phase separation. Journal of Membrane Science, 1990, 52(3): 239–261
CrossRef Google scholar
[3]
Lloyd D R, Kim S S, Kinzer K E. Microporous membrane formation via thermally-induced phase separation. II. Liquid-liquid phase separation. Journal of Membrane Science, 1991, 64(1-2): 1–11
CrossRef Google scholar
[4]
Kim S S, Lloyd D R. Microporous membrane formation via thermally-induced phase separation. III. Effect of thermodynamic interactions on the structure of isotactic polypropylene membranes. Journal of Membrane Science, 1991, 64(1-2): 13–29
CrossRef Google scholar
[5]
Lim G B A, Kim S S, Ye Q, Wang Y F, Lloyd D R. Microporous membrane formation via thermally-induced phase separation. IV. Effect of isotactic polypropylene crystallization kinetics on membrane structure. Journal of Membrane Science, 1991, 64(1-2): 31–40
CrossRef Google scholar
[6]
Kim S S, Lim G B A, Alwattari A A, Wang Y F, Lloyd D R. Microporous membrane formation via thermally-induced phase separation. V. Effect of diluent mobility and crystallization on the structure of isotactic polypropylene membranes. Journal of Membrane Science, 1991, 64(1-2): 41–53
CrossRef Google scholar
[7]
Doi Y, Matsumura H. Polyvinylidene fluoride porous membrane and a method for producing the same. US Patent, 5022990, 1991
[8]
Alwattari A A, Lloyd D R. Microporous membrane formation via thermally-induced phase separation. VI. Effect of diluent morphology and relative crystallization kinetics on polypropylene membrane structure. Journal of Membrane Science, 1991, 64(1-2): 55–67
CrossRef Google scholar
[9]
McGuire K S, Lloyd D R, Lim G B A. Microporous membrane formation via thermally-induced phase separation. VII: Effect of dilution, cooling rate, and nucleating agent addition on morphology. Journal of Membrane Science, 1993, 79(1): 27–34
CrossRef Google scholar
[10]
Aerts L, Kunz M, Berghmans H, Koningsveld R. Relation between phase behaviour and morphology in polyethylene/diphenyl ether systems. Die Makromolekulare Chemie, 1993, 194(10): 2697–2712
CrossRef Google scholar
[11]
Matsuyama H, Berghmans S, Batarseh M T, Lloyd D R. Effects of thermal history on anisotropic and asymmetric membranes formed by TIPS. Journal of Membrane Science, 1998, 142: 27–42
CrossRef Google scholar
[12]
Baker R W. Membrane Technology and Applications. 2nd ed. New York: John Wiley and Sons Press, 2004, 1–14
[13]
Hiatt W C, Vitzhum G H, Wagener K B, Gerlach K, Josefiak C. Microporous membranes via upper critical-temperature phase-separation. Materials Science of Synthetic Membrane. Washington D C: American Chemical Society Symposium, 1985, 269: 229–244
[14]
McGuire K S, Laxminarayan A, Lloyd D R. Kinetics of droplet growth in liquid‒liquid phase separation of polymer-diluent systems: Experimental results. Polymer, 1995, 36(26): 4951–4960
CrossRef Google scholar
[15]
Matsuyama H, Teramoto M, Kudari S, Kitamura Y. Effect of diluents on membrane formation via thermally induced phase separation. Journal of Applied Polymer Science, 2001, 82(1): 169–177
CrossRef Google scholar
[16]
Matsuyama H, Berghmans S, Lloyd D R. Formation of hydrophilic microporous membranes via thermally induced phase separation. Journal of Membrane Science, 1998, 142(2): 213–224
CrossRef Google scholar
[17]
Yang M C, Perng J S. Comparison of solvent removal methods of microporous polypropylene tubular membranes via thermally induced phase separation using a novel solvent: Camphene. Journal of Polymer Research, 1999, 6(4): 251–258
CrossRef Google scholar
[18]
Matsuyama H, Maki T, Teramoto M, Asano K. Effect of polypropylene molecular weight on porous membrane formation by thermally induced phase separation. Journal of Membrane Science, 2002, 204(1-2): 323–328
CrossRef Google scholar
[19]
Matsuyama H, Hayashi K, Maki T, Teramoto M, Kubota N. Effect of polymer density on polyethylene hollow fiber membrane formation via thermally induced phase separation. Journal of Applied Polymer Science, 2004, 93(1): 471–474
CrossRef Google scholar
[20]
Mehta R H, Kalika D S. Characteristics of poly(ether ether ketone) microporous membranes prepared via tbermally induced phase separation (TIPS). Journal of Applied Polymer Science, 1997, 66(12): 2347–2355
CrossRef Google scholar
[21]
Ding H Y, Zhang Q, Wang F M, Tian Y, Wang L H, Shi Y Q, Liu B Q. Structure control of polyphenylene sulfide membrane prepared by thermally induced phase separation. Journal of Applied Polymer Science, 2007, 105(6): 3280–3286
CrossRef Google scholar
[22]
Matsuyama H, Kobayashi K, Maki T, Tearamoto M, Tsuruta H. Effect of the ethylene content of poly(ethylene-co-vinyl-alcohol) on the formation of microporous membranes via thermally induced phase separation. Journal of Applied Polymer Science, 2001, 82(10): 2583–2589
CrossRef Google scholar
[23]
Cui Z Y. Preparation of poly(vinylidene fluoride)/poly(methyl methacrylate) blend microporous membranes via the thermally induced phase separation process. Journal of Macromolecular Science, Part B: Physics, 2010, 49(2): 301–318
CrossRef Google scholar
[24]
Lee J S, Lee H K, Kim J Y, Hyon S H, Kim S C. Thermally induced phase separation in poly (lactic acid)/dialkyl phthalate systems. Journal of Applied Polymer Science, 2003, 88(9): 2224–2232
CrossRef Google scholar
[25]
Chen J S, Tu S L, Tsay R Y. A morphological study of porous polylactide scaffolds prepared by thermally induced phase separation. Journal of the Taiwan Institute of Chemical Engineers, 2010, 41(2): 229–238
CrossRef Google scholar
[26]
Molladavoodi S, Gorbet M, Medley J, Ju K H. Investigation of microstructure, mechanical properties and cellular viability of poly(L-lactic acid) tissue engineering scaffolds prepared by different thermally induced phase separation protocols. Journal of the Mechanical Behavior of Biomedical Materials, 2013, 17: 186–197
CrossRef Google scholar
[27]
Cui Z Y, Xu Y Y, Zhu L P, Wei X Z, Zhang C F, Zhu B K. Preparation of PVDF/PMMA blend microporous membranes for lithium ion batteries via thermally induced phase separation process. Materials Letters, 2008, 62(23): 3809–3811
CrossRef Google scholar
[28]
Laxminarayan A, McGuire K S, Kim S S, Lloyd D R. Effect of initial composition, phase separation temperature and polymer crystallization on the formation of microcellular structures via thermally induced phase separation. Polymer, 1994, 35(14): 3060–3068
CrossRef Google scholar
[29]
Aubert J H. Isotactic poymstyrene phase diagrams and physical gelation. Macromolecules, 1988, 21(12): 3468–3473
CrossRef Google scholar
[30]
Vandeweerdt P, Berghmans H, Tervoort Y. Temperature-concentration behavior of solutions of polydisperse atactic PMMA and its influence on the formation of amorphous microporous membrane. Macromolecules, 1991, 24(12): 3547–3552
CrossRef Google scholar
[31]
Hikmet R M, Callister S, Keller A. Thermoreversible gelation of atactic polystyrene: Phase transformation and morphology. Polymer, 1988, 29(8): 1378–1388
CrossRef Google scholar
[32]
Gao Y, Ye L. Basic of Membrane Separation Technology. Beijing: Chemical Industry Press, 1989, 106–109
[33]
Erich K, Thomas B, Friedbert W, Frank W. Integrally asymmetrical polyolefin membrane. US Patent, 6497752 B1, 2002
[34]
Matsuyama H, Kudari S, Kiyofuji H, Kitamura Y. Kinetic studies of thermally induced phase separation in polymer-diluent system. Journal of Applied Polymer Science, 2000, 76(7): 1028–1036
CrossRef Google scholar
[35]
Kim S S, Lloyd D R. Thermodynamics of polymer/diluent systems for thermally induced phase separation: 3. Liquid-liquid phase separation systems. Polymer, 1992, 33(5): 1047–1057
CrossRef Google scholar
[36]
Yave W, Quijada R, Serafini D, Lloyd D R. Effect of the polypropylene type on polymer-diluent phase diagrams and membrane structure in membranes formed via the TIPS process Part I. Metallocene and Ziegler-Natta polypropylenes. Journal of Membrane Science, 2005, 263(1-2): 146–153
CrossRef Google scholar
[37]
Yave W, Quijada R, Serafini D, Lloyd D. Effect of the polypropylene type on polymer-diluent phase diagrams and membrane structure in membranes formed via the TIPS process. Part II. Syndiotactic and isotactic polypropylenes produced using metallocene catalysts. Journal of Membrane Science, 2005, 263(1-2): 154–159
CrossRef Google scholar
[38]
Vanegas M E, Quijada R, Serafini D. Microporous membranes prepared via thermally induced phase separation from metallocenic syndiotactic polypropylenes. Polymer, 2009, 50(9): 2081–2086
CrossRef Google scholar
[39]
Luo B Z, Zhang J, Wang X L, Zhou Y, Wen J Z. Effects of nucleating agents and extractants on the structure of polypropylene microporous membranes via thermally induced phase separation. Desalination, 2006, 192(1-3): 142–150
CrossRef Google scholar
[40]
Luo B Z, Li Z H, Zhang J, Wang X L. Formation of anisotropic microporous isotactic polypropylene (iPP) membrane via thermally induced phase separation. Desalination, 2008, 233(1-3): 19–31
CrossRef Google scholar
[41]
Xi Z Y, Yang Y Q, Wang Y J, Zhao H. Effect of poly(ethylene glycol) on structure and properties of polypropylene membrane formed via thermally induced phase separation. Procedia Engineering, 2012, 44: 1636–1638
CrossRef Google scholar
[42]
Lin Y K, Chen G, Yang J, Wang X L. Formation of isotactic polypropylene membranes with bicontinuous structure and good strength via thermally induced phase separation method. Desalination, 2009, 236(1-3): 8–15
CrossRef Google scholar
[43]
Tang Y H, He Y D, Wang X L. Effect of adding a second diluent on the membrane formation of polymer/diluent system via thermally induced phase separation: Dissipative particle dynamics simulation and its experimental verification. Journal of Membrane Science, 2012, 409-410: 164–172
CrossRef Google scholar
[44]
Matsuyama H, Teramoto M, Kuwana M, Kitamura Y. Formation of polypropylene particles via thermally induced phase separation. Polymer, 2000, 41(24): 8673–8679
CrossRef Google scholar
[45]
Chen G, Lin Y K, Wang X L. Formation of microporous membrane of isotactic polypropylene in dibutyl phthalate-soybean oil via thermally induced phase separation. Journal of Applied Polymer Science, 2007, 105(4): 2000–2007
CrossRef Google scholar
[46]
Tang N, Jia Q, Zhang H J, Li J J, Cao S. Preparation and morphological characterization of narrow pore size distributed polypropylene hydrophobic membranes for vacuum membrane distillation via thermally induced phase separation. Desalination, 2010, 256(1-3): 27–36
CrossRef Google scholar
[47]
Funk C V, Beavers B L, Lloyd D R. Effect of particulate filler on cell size in membranes formed via liquid-liquid thermally induced phase separation. Journal of Membrane Science, 2008, 325(1): 1–5
CrossRef Google scholar
[48]
Yang Z S, Li P L, Chang H Y, Wang S. Effect of diluent on the morphology and performance of iPP hollow fiber microporous membrane via thermally induced phase separation. Chinese Journal of Chemical Engineering, 2006, 14(3): 394–397
CrossRef Google scholar
[49]
Yang Z S, Li P L, Xie L X, Wang Z, Wang S C. Preparation of iPP hollow-fiber microporous membranes via thermally induced phase separation with co-solvents of DBP and DOP. Desalination, 2006, 192(1-3): 168–181
CrossRef Google scholar
[50]
He Y D, Tang Y H, Wang X L. Dissipative particle dynamics simulation on the membrane formation of polymer-diluent system via thermally induced phase separation. Journal of Membrane Science, 2011, 368(1-2): 78–85
CrossRef Google scholar
[51]
Matsuba G, Sakamoto S, Ogino Y, Nishida K, Kanaya T. Crystallization of polyethylene blends under shear flow. Effects of crystallization temperature and ultrahigh molecular weight component. Macromolecular, 2007, 40(20): 7270–7275
CrossRef Google scholar
[52]
Matsuyama H, Kim M, Lloyd D R. Effect of extraction and drying on the structure of microporous polyethylene membranes prepared via thermally induced phase separation. Journal of Membrane Science, 2002, 204(1-2): 413–419
CrossRef Google scholar
[53]
Ding H Y, Tian Y, Wang L H, Liu B Q. Preparation of ultrahigh-molecular-weight polyethylene membranes via a thermally induced phase-separation method. Journal of Applied Polymer Science, 2007, 105(6): 3355–3362
CrossRef Google scholar
[54]
Zhang C F, Bai Y X, Sun Y P, Gu J, Xu Y Y. Preparation of hydrophilic HDPE porous membranes via thermally induced phase separation by blending of amphiphilic PE-b-PEG copolymer. Journal of Membrane Science, 2010, 365(1-2): 216–224
CrossRef Google scholar
[55]
Zhang M, Zhang C F, Yao Z K, Shi J L, Zhu B K, Xu Y Y. Preparation of high density polyethylene/polyethylene-block-poly(ethylene glycol) copolymer blend porous membranes via thermally induced phase separation process and their properties. Chinese Journal of Polymer Science, 2010, 28(3): 337–346
CrossRef Google scholar
[56]
Sahle C J, Zschintzsch M, Sternemann C, Von Borany J, Mücklich A, Nyrow A, Jeutter N M, Wagner R, Frahm R, Tolan M. Influence of hydrogen on thermally induced phase separation in GeO/SiO2 multilayers. Nanotechnology, 2011, 22(12): 125709
CrossRef Google scholar
[57]
Sun H, Rhee K B, Kitano T, Mah S I. High-density polyethylene (HDPE) hollow fiber membrane via thermally induced phase separation. I. Phase separation behaviors of HDPE-liquid paraffin (LP) blends and its influence on the morphology of the membrane. Journal of Applied Polymer Science, 1999, 73(11): 2135–2142
CrossRef Google scholar
[58]
Sun H, Rhee K B, Kitano T, Mah S I. HDPE hollow-fiber membrane via thermally induced phase separation. II. Factors affecting the water permeability of the membrane. Journal of Applied Polymer Science, 2000, 75(10): 1235–1242
CrossRef Google scholar
[59]
Sun H, Yi Y S, Rhee K B. Method of preparing hollow fiber-type separation membrane from high density polyethylene. US Patent, 6436319, 2002
[60]
Matsuyama H, Okafuji H, Maki T, Teramoto M, Kubota N. Preparation of polyethylene hollow fiber membrane via thermally induced phase separation. Journal of Membrane Science, 2003, 223(1-2): 119–126
CrossRef Google scholar
[61]
Wang J L, Wang L, Ruan W X, Zhang C, Ji J B. Rheology behavior of high-density polyethylene/diluent blends and fabrication of hollow-fiber membranes via thermally induced phase separation. Journal of Applied Polymer Science, 2010, 118: 2186–2194
[62]
Zhang C F, Bai Y X, Gu J, Sun Y P. Crystallization kinetics of ultra high-molecular weight polyethylene in liquid paraffin during solid-liquid thermally induced phase separation process. Journal of Applied Polymer Science, 2011, 122(4): 2442–2448
CrossRef Google scholar
[63]
Shi J L, Fang L F, Zhang H, Liang Z Y, Zhu B K, Zhu L P. Effects of the extractant on the hydrophilicity and performance of HDPE/PE-b-PEG blend membranes prepared via a TIPS process. Journal of Applied Polymer Science, 2013, 130(5): 3816–3824
CrossRef Google scholar
[64]
Shi J L, Fang L F, Zhang H, Liang Z Y, Zhu B K, Zhu L P. Influences of extractant on the hydrophilicity and performances of HDPE/PE-b-PEG blend membranes prepared via TIPS process. Journal of Applied Polymer Science, 2013, 130(4): 2680–2687
CrossRef Google scholar
[65]
Fu S S, Mastuyama H, Teramoto M. Ce(III) recovery by supported liquid membrane using polyethylene hollow fiber prepared via thermally induced phase separation. Separation and Purification Technology, 2004, 36(1): 17–22
CrossRef Google scholar
[66]
Yoo S H, Kim C K. Effects of the diluent mixing ratio and conditions of the thermally induced phase-separation process on the pore size of microporous polyethylene membranes. Journal of Applied Polymer Science, 2008, 108(5): 3154–3162
CrossRef Google scholar
[67]
Zhang H, Zhou J, Zhang X L, Wang H T, Zhong W, Du Q G. High density polyethylene-grafted-maleic anhydride low-k porous films prepared via thermally induced phase separation. European Polymer Journal, 2008, 44(4): 1095–1101
CrossRef Google scholar
[68]
Park M J, Noh S C, Kim C K. Effects of the phase behavior of the diluent mixture on the microstructure of polyethylene membranes formed by thermally induced phase separation process. Industrial & Engineering Chemistry Research, 2013, 52(31): 10690–10698
CrossRef Google scholar
[69]
Li N N, Xiao C F, Zhang Z Y. Effect of polyethylene glycol on the performance of ultrahigh-molecular-weight polyethylene membranes. Journal of Applied Polymer Science, 2010, 117(2): 720–728
CrossRef Google scholar
[70]
Chidlaw M B, Friesen D T, Thornton C A, Kelly D J, Brose D J. Process of making polyvinylidene fluoride membranes.  US Pattent, 5565153, 1996
[71]
Smith S D, Shipman G H, Floyd R M, Freemyer H T, Hamrock S J, Yandrasits M A. Walton. Microporous PVDF films and method of manufacturing.  US Patent, 20050/058821 A1, 2003
[72]
Ghasem N, Al-Marzouqi M, Duaidar A. Effect of quenching temperature on the performance of poly(vinylidene fluoride) microporous hollow fiber membranes fabricated via thermally induced phase separation technique on the removal of CO2 from CO2-gas mixture. International Journal of Greenhouse Gas Control, 2011, 5(6): 1550–1558
CrossRef Google scholar
[73]
Su Y, Chen C X, Li J D. Novel PVDF microfiltration membranes prepared by thermally induced phase separation. Journal of the American Chemical Society, 2005, 93: 941–942
[74]
Yang H C, Wu Q Y, Liang H Q, Wan L S, Xu Z K. Thermally induced phase separation of poly(vinylidene fluoride)/diluent systems: Optical microscope and infrared spectroscopy studies. Journal of Polymer Science. Part B, Polymer Physics, 2013, 51(19): 1438–1447
CrossRef Google scholar
[75]
Gu M H, Zhang J, Wang X L, Ma W. Crystallization behavior of PVDF in PVDF-DMP system via thermally induced phase separation. Journal of Applied Polymer Science, 2006, 102(4): 3714–3719
CrossRef Google scholar
[76]
Gu M H, Zhang J, Wang X L, Tao H, Ge L. Formation of poly (vinylidene fluoride) (PVDF) membranes via thermally induced phase separation. Desalination, 2006, 192(1-3): 160–167
CrossRef Google scholar
[77]
Yang J, Wang X L, Tian Y, Lin Y K, Tian F. Morphologies and crystalline forms of polyvinylidene fluoride membranes prepared in different diluents by thermally induced phase separation. Journal of Polymer Science. Part B, Polymer Physics, 2010, 48(23): 2468–2475
CrossRef Google scholar
[78]
Cui Z Y, Du C H, Xu Y Y, Ji G L, Zhu B K. Preparation of porous PVdF membrane via thermally induced phase separation using sulfolane. Journal of Applied Polymer Science, 2008, 108(1): 272–280
CrossRef Google scholar
[79]
Yang J, Li D W, Lin Y K, Wang X L, Tian F, Wang Z. Formation of a bicontinuous structure membrane of polyvinylidene fluoride in diphenyl ketone diluent via thermally induced phase separation. Journal of Applied Polymer Science, 2008, 110(1): 341–347
CrossRef Google scholar
[80]
Zhang Z C, Guo C G, Guan Y P, Lv J L. Study on the Nonisothermal crystallization kinetics of poly(vinylidene fluoride)/tributyl citrate blends via thermally induced phase separation. Journal of Macromolecular Science, Part B: Physics, 2013, 52(7): 984–997
CrossRef Google scholar
[81]
Li X F, Xu G Q, Lu X L, Xiao C F. Effects of mixed diluent compositions on poly(vinylidene fluoride) membrane morphology in a thermally induced phase-separation process. Journal of Applied Polymer Science, 2008, 107(6): 3630–3637
CrossRef Google scholar
[82]
Li X F, Liu H Y, Xiao C F, Ma S H, Zhao X H. Effect of take-up speed on PVDF hollow fiber membrane in a TIPS process. Journal of Applied Polymer Science, 2013, 128(2): 1054–1060
CrossRef Google scholar
[83]
Ji G L, Du C H, Zhu B K, Xu Y Y. Preparation of porous PVDF membrane via thermally induced phase separation with diluent mixture of DBP and DEHP. Journal of Applied Polymer Science, 2007, 105(3): 1496–1502
CrossRef Google scholar
[84]
Ji G L, Zhu B K, Zhang C F, Xu Y Y. Nonisothermal crystallization kinetics of poly (vinylidene fluoride) in a poly (vinylidene fluoride)/dibutyl phthalate/di(2-ethylhexyl) phthalate system via thermally induced phase separation. Journal of Applied Polymer Science, 2008, 107(4): 2109–2117
CrossRef Google scholar
[85]
Ji G L, Zhu L P, Zhu B K, Zhang C F, Xu Y Y. Structure formation and characterization of PVDF hollow fiber membrane prepared via TIPS with diluent mixture. Journal of Membrane Science, 2008, 319(1-2): 264–270
CrossRef Google scholar
[86]
Liu M, Xu Z L, Chen D G, Wei Y M. Preparation and characterization of microporous PVDF membrane by thermally induced phase separation from a ternary polymer/solvent/non-solvent system. Desalination and Water Treatment, 2010, 17(1-3): 183–192
CrossRef Google scholar
[87]
Takamura M, Yoshida H. Porous polyvinylidene fluoride resin film and process for producing the same. US Patent, 6299773, 2001
[88]
Li X F, Lu X L. Morphology of polyvinylidene fluoride and its blend in thermally induced phase separation process. Journal of Applied Polymer Science, 2006, 101(5): 2944–2952
CrossRef Google scholar
[89]
Ma W Z, Zhang J, Van der Bruggen B. Wang X L. Formation of an interconnected lamellar structure in PVDF membranes with nanoparticles addition via solid-liquid TIPS. Journal of Applied Polymer Science, 2013, 127(4): 2715–2723
CrossRef Google scholar
[90]
Cui Z Y, Xu Y Y, Zhu L P, Wang J Y, Xi Z Y, Zhu B K. Preparation of PVDF/PEO-PPO-PEO blend microporous membranes for lithium ion batteries via thermally induced phase separation process. Journal of Membrane Science, 2008, 325(2): 957–963
CrossRef Google scholar
[91]
Cui Z Y. Preparation of PVDF-P123 blend microporous membrane via TIPS process. Polymer & Polymer Composites, 2012, 20(3): 237–251
[92]
Rajabzadeh S, Liang C, Ohmukai Y, Maruyama T, Matsuyama H. Effect of additives on the morphology and properties of poly(vinylidene fluoride) blend hollow fiber membrane prepared by the thermally induced phase separation method. Journal of Membrane Science, 2012, 423-424: 189–194
CrossRef Google scholar
[93]
Rajabzadeh S, Maruyama T, Sotani T, Matsuyama H. Preparation of PVDF hollow fiber membrane from a ternary polymer/solvent/nonsolvent system via thermally induced phase separation (TIPS) method. Separation and Purification Technology, 2008, 63(2): 415–423
CrossRef Google scholar
[94]
Pan B J, Zhu L, Li X F. Preparation of PVDF/CaCO3 composite hollow fiber membrane via a thermally induced phase separation method. Polymer Composites, 2013, 34(7): 1204–1210
CrossRef Google scholar
[95]
Cui A H, Liu Z, Xiao C F, Zhang Y F. Effect of micro-sized SiO2-particle on the performance of PVDF blend membranes via TIPS. Journal of Membrane Science, 2010, 360(1-2): 259–264
CrossRef Google scholar
[96]
Liang H Q, Wu Q Y, Wan L S, Huang X J, Xu Z K. Thermally induced phase separation followed by in situ sol-gel process: A novel method for PVDF/SiO2 hybrid membranes. Journal of Membrane Science, 2014, 465: 56–67
CrossRef Google scholar
[97]
Liu M, Chen D G, Xu Z L, Wei Y M, Tong M. Effects of nucleating agents on the morphologies and performances of poly(vinylidene fluoride) microporous membranes via thermally induced phase separation. Journal of Applied Polymer Science, 2013, 128(1): 836–844
CrossRef Google scholar
[98]
Rajabzadeh S, Maruyama T, Ohmukai Y, Sotani T, Matsuyama H. Preparation of PVDF/PMMA blend hollow fiber membrane via thermally induced phase separation (TIPS) method. Separation and Purification Technology, 2009, 66(1): 76–83
CrossRef Google scholar
[99]
Ma W Z, Chen S J, Zhang J, Wang X L. Kinetics of thermally induced phase separation in the PVDF blend/methyl salicylate system and its effect on membrane structures. Journal of Macromolecular Science, Part B: Physics, 2011, 50(1): 1–15
CrossRef Google scholar
[100]
Ma W Z, Zhang J, Wang X L, Wang S M. Effect of PMMA on crystallization behavior and hydrophilicity of poly(vinylidene fluoride)/poly(methyl methacrylate) blend prepared in semi-dilute solutions. Applied Surface Science, 2007, 253(20): 8377–8388
CrossRef Google scholar
[101]
Wu L S, Sun J F. Structure and properties of PVDF membrane with PES-C addition via thermally induced phase separation process. Applied Surface Science, 2014, 322: 101–110
CrossRef Google scholar
[102]
Matsuyama H, Iwatani T, Kitamura Y, Tearamoto M, Sugoh N. Formation of porous poly(ethylene-co-vinyl alcohol) membrane via thermally induced phase separation. Journal of Applied Polymer Science, 2001, 79(13): 2449–2455
CrossRef Google scholar
[103]
Matsuyama H, Iwatani T, Kitamura Y, Tearamoto M, Sugoh N. Solute rejection by poly(ethylene-co-vinyl alcohol) membrane prepared by thermally induced phase separation. Journal of Applied Polymer Science, 2001, 79(13): 2456–2463
CrossRef Google scholar
[104]
Lv R, Zhou J, Xu P, Du Q G, Wang H T, Zhong W. Estimation of phase diagrams for copolymer-diluent systems in thermally induced phase separation. Journal of Applied Polymer Science, 2007, 105(6): 3513–3518
CrossRef Google scholar
[105]
Shang M, Matsuyama H, Maki T, Teramoto M, Lloyd D R. Preparation and characterization of poly(ethylene-co-vinyl alcohol) membranes via thermally induced liquid-liquid phase separation. Journal of Applied Polymer Science, 2003, 87(5): 853–860
CrossRef Google scholar
[106]
Shang M, Matsuyama H, Teramoto M, Lloyd D R, Kubota N. Preparation and membrane performance of poly(ethylene-co-vinyl alcohol) hollow fiber membrane via thermally induced phase separation. Polymer, 2003, 44(24): 7441–7447
CrossRef Google scholar
[107]
Shang M, Matsuyama H, Teramoto M, Lloyd D R, Kubota N. Effect of glycerol content in cooling bath on performance of poly(ethylene-co-vinyl alcohol) hollow fiber membranes. Separation and Purification Technology, 2005, 45(3): 208–212
CrossRef Google scholar
[108]
Zhou J, Zhang H, Wang H T, Du Q G. Effect of cooling baths on EVOH microporous membrane structures in thermally induced phase separation. Journal of Membrane Science, 2009, 343(1-2): 104–109
CrossRef Google scholar
[109]
Shang M, Matsuyama H, Teramoto M, Okuno J, Lloyd D R, Kubota N. Effect of diluent on poly(ethylene-co-vinyl alcohol) hollow-fiber membrane formation via thermally induced phase separation. Journal of Applied Polymer Science, 2005, 95(2): 219–225
CrossRef Google scholar
[110]
Lv R, Zhou J, Du Q G, Wang H T, Zhong W. Effect of posttreatment on morphology and properties of poly(ethylene-co-vinyl alcohol) microporous hollow fiber via thermally induced phase separation. Journal of Applied Polymer Science, 2007, 104(6): 4106–4112
CrossRef Google scholar
[111]
Lv R, Zhou J, Du Q, Wang H, Zhong W. Preparation and characterization of EVOH/PVP membranes via thermally induced phase separation. Journal of Membrane Science, 2006, 281(1-2): 700–706
CrossRef Google scholar
[112]
de Lima J A, Felisberti M I. Porous polymer structures obtained via the TIPS process from EVOH/PMMA/DMF solutions. Journal of Membrane Science, 2009, 344(1-2): 237–243
CrossRef Google scholar
[113]
Matsuyama H, Berghmans S, Lloyd D R. Formation of hydrophilic microporous membranes via thermally induced phase separation. Journal of Membrane Science, 1998, 142(2): 213–224
CrossRef Google scholar
[114]
Zhang J, Chen S J, Jin J, Shi X M, Wang X L, Xu Z Z. Non-isothermal melt crystallization kinetics for ethylene-acrylic acid copolymer in diluents via thermally induced phase separation. Journal of Thermal Analysis and Calorimetry, 2010, 101(1): 243–254
CrossRef Google scholar
[115]
Zhang J, Fu J H, Wang X L, Wang B, Xu Z, Wen J. Effect of diluents on hydrophilic ethylene-acrylic acid co-polymer membrane structure via thermally induced phase separation. Desalination, 2006, 192(1-3): 151–159
CrossRef Google scholar
[116]
Ding H Y, Zeng Y M, Meng X F, Tian Y, Shi Y Q, Jiao Q Z, Zhang S M. Porous polyphenylene sulfide membrane with high durability against solvents by the thermally induced phase-separation method. Journal of Applied Polymer Science, 2006, 102(3): 2959–2966
CrossRef Google scholar
[117]
Han X T, Ding H Y, Wang L H, Xiao C F. Effects of nucleating agents on the porous structure of polyphenylene sulfide via thermally induced phase separation. Journal of Applied Polymer Science, 2008, 107(4): 2475–2479
CrossRef Google scholar
[118]
Matsuyama H, Kakemizu M, Maki T, Tearamoto M, Mishima K, Matsuyama K. Preparation of porous poly(oxymethylene) membrane with high durability against solvents by a thermally induced phase-separation method. Journal of Applied Polymer Science, 2002, 83(9): 1993–1999
CrossRef Google scholar
[119]
Ramaswamy S, Greenberg A R, Krantz W B. Fabrication of poly(ECFFE) membranes via thermally induced phase separation. Journal of Membrane Science, 2002, 210(1): 175–180
CrossRef Google scholar
[120]
Roh I J, Ramaswamy S, Krantz W B, Greenberg A R. Poly(ethylene chlorotrifluoroethylene) membrane formation via thermally induced phase separation (TIPS). Journal of Membrane Science, 2010, 362(1-2): 211–220
CrossRef Google scholar
[121]
Tao H J, Zhang J, Wang X L. Effect of diluents on the crystallization behavior of poly(4-methyl-1-pentene) and membrane morphology via thermally induced phase separation. Journal of Applied Polymer Science, 2008, 108(2): 1348–1355
CrossRef Google scholar
[122]
Tanaka T, Lloyd D R. Formation of poly(L-lactic acid) microfiltration membranes via thermally induced phase separation. Journal of Membrane Science, 2004, 238(1-2): 65–73
CrossRef Google scholar
[123]
Shen F, Lu X, Bian X, Shi L. Preparation and hydrophilicity study of poly(vinyl butyral)-based ultrafiltration membranes. Journal of Membrane Science, 2005, 265(1-2): 74–84
CrossRef Google scholar
[124]
Fu X, Matsuyama H, Teramoto M, Nagai H. Preparation of hydrophilic poly(vinyl butyral) hollow fiber membrane via thermally induced phase separation. Separation and Purification Technology, 2005, 45(3): 200–207
CrossRef Google scholar
[125]
Kitaura T, Fadzlina W N, Ohmukai Y, Maruyama T, Matsuyama H. Preparation and characterization of several types of PVB hollow fiber membranes by TIPS. Journal of Applied Polymer Science, 2013, 127(5): 4072–4078
CrossRef Google scholar
[126]
Fu X, Matsuyama H, Teramoto M, Nagai H. Preparation of polymer blend hollow fiber membrane via thermally induced phase separation. Separation and Purification Technology, 2006, 52(2): 363–371
CrossRef Google scholar
[127]
Qiu Y R, Rahman N, Matsuyama H. Preparation of hydrophilic poly(vinyl butyral)/pluronic F127 blend hollow fiber membrane via thermally induced phase separation. Separation and Purification Technology, 2008, 61(1): 1–8
CrossRef Google scholar
[128]
Qiu Y R, Matsuyama H, Gao G Y, Ou Y W, Miao C. Effects of diluent molecular weight on the performance of hydrophilic poly(vinyl butyral)/pluronic F127 blend hollow fiber membrane via thermally induced phase separation. Journal of Membrane Science, 2009, 338(1-2): 128–134
CrossRef Google scholar
[129]
Tsai F J, Torkelson J M. Microporous poly(methy methacrylate) membranes: Effect of a low-viscosity solvent on the formation mechanism. Macromolecules, 1990, 23(23): 4983–4989
CrossRef Google scholar
[130]
Tsai F J, Torkelson J M. Roles of phase separation mechanism and coarsening in the formation of poly(methyl methacrylate) asymmetric membranes. Macromolecules, 1990, 23(3): 775–784
CrossRef Google scholar
[131]
Song S W, Torkelson J M. Coarsening effects on microstructure formation in isopycnic polymer solutions and membranes produced via thermally induced phase separation. Macromolecules, 1994, 27(22): 6389–6397
CrossRef Google scholar
[132]
Song S W, Torkelson J M. Coarsening effects on the formation of microporous membranes produced via thermlly induced phase separation of polystyrene-cyclohexanol solutions. Journal of Membrane Science, 1995, 98(3): 209–222
CrossRef Google scholar
[133]
Gao C Y, Li A, Feng L X, Yi X S, Shen J C. Factors controlling surface morphology of porous polystyrene membranes prepared by thermally induced phase separation. Polymer International, 2000, 49(4): 323–328
CrossRef Google scholar
[134]
Matsuyama H, Takida Y, Maki T, Teramoto M. Preparation of porous membrane by combined use of thermally induced phase separation and immersion precipitation. Polymer, 2002, 43(19): 5243–5248
CrossRef Google scholar
[135]
Li X F, Wang Y G, Lu X L, Xiao C F. Morphology changes of polyvinylidene fluoride membrane under different phase separation mechanisms. Journal of Membrane Science, 2008, 320(1-2): 477–482
CrossRef Google scholar
[136]
Cha B J, Yang J M. Preparation of poly(vinylidene fluoride) hollow fiber membranes for microfiltration using modified TIPS process. Journal of Membrane Science, 2007, 291(1-2): 191–198
CrossRef Google scholar
[137]
Hellman D. A novel process for membrane fabrication: Thermally assisted evaporative phase separation (TAEPS). Journal of Membrane Science, 2004, 230(1-2): 99–109
CrossRef Google scholar
[138]
Zhu Z X, Meng G Z. c-TIPS method for membrane production. Membrane Science and Technology (China), 2010, 30(6): 1–6
[139]
Lu Z P, Lü X L, Wu C R, Jia Y, Wang X, Chen H Y, Gao Q J. Preparation of polyvinylidene fluoride hollow fiber porous membrane via a low thermally induced phase separation. Membrane Science and Technology (China), 2012, 32(1): 12–22
[140]
Liu M, Wei Y M, Xu Z L, Guo R Q, Zhao L B. Preparation and characterization of polyethersulfone microporous membrane via thermally induced phase separation with low critical solution temperature system. Journal of Membrane Science, 2013, 437: 169–178
CrossRef Google scholar
[141]
Zhao L B, Liu M, Xu Z L, Wei Y M, Xu M X. PSF hollow fiber membrane fabricated from PSF-HBPE-PEG400-DMAc dope solutions via reverse thermally induced phase separation. Chemical Engineering Science, 2015, 137: 131–139
CrossRef Google scholar

Acknowledgemwnt

The authors are thankful for the financial support received from the Special Project of the Development and Industrialization of New Materials for National Development and Reform Commission in China (Grant No. GX1301), the National Natural Science Foundation of China (Grant No. 21306044), the China Postdoctoral Science Foundation (Grant No. 2015M571507), the Key Technology R&D Program of Shanghai Committee of Science and Technology in China (Grant No. 1351102000), the Key Technology R&D Program of Jiangsu Committee of Science and Technology in China (Grant No. BE2013031), and the National Science and Technology Support Project of China (Grant Nos. 2014BAB07B01 and 2015BAB09B01).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1239 KB)

Accesses

Citations

Detail

Sections
Recommended

/