MILP synthesis of separation processes for waste oil-in-water emulsions treatment

Zorka N. Pintarič , Gorazd P. Škof , Zdravko Kravanja

Front. Chem. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (1) : 120 -130.

PDF (410KB)
Front. Chem. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (1) : 120 -130. DOI: 10.1007/s11705-016-1559-1
RESEARCH ARTICLE
RESEARCH ARTICLE

MILP synthesis of separation processes for waste oil-in-water emulsions treatment

Author information +
History +
PDF (410KB)

Abstract

This paper presents a novel synthesis method for designing integrated processes for oil-in-water (O/W) emulsions treatment. General superstructure involving alternative separation technologies is developed and modelled as a mixed integer linear programming (MILP) model for maximum annual profit. Separation processes in the superstructure are divided into three main sections of which the pretreatment and final treatment are limited to the selection of one alternative (or bypass) only, while within the intermediate section various combinations of different technologies in series can be selected. Integrated processes composed of selected separation techniques for given ranges of input chemical oxygen demand (COD) can be proposed by applying parametric analyses within the superstructure approach. This approach has been applied to an existing industrial case study for deriving optimal combinations of technologies for treating diverse oil-in-water emulsions within the range of input COD values between 1000 mg⋅L‒1 and 145000 mg⋅L‒1. The optimal solution represents a flexible and profitable process for reducing the COD values below maximal allowable limits for discharging effluent into surface water.

Graphical abstract

Keywords

oil-in-water emulsion / chemical oxygen demand / superstructure / process synthesis / MILP

Cite this article

Download citation ▾
Zorka N. Pintarič, Gorazd P. Škof, Zdravko Kravanja. MILP synthesis of separation processes for waste oil-in-water emulsions treatment. Front. Chem. Sci. Eng., 2016, 10(1): 120-130 DOI:10.1007/s11705-016-1559-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cheng CPhipps DAlkhaddar R M. Treatment of spent metalworking fluids. Water Research200539(17): 4051–4063

[2]

Marinescu I DRowe W BDimitrov BOhmori H. Tribology of Abrasive Machining Processes.Oxford: Elsevier, 2013, 441–482

[3]

Benito J MCambiella ALobo ACoca JGutiérrez GPazos C. Formulation, characterization and treatment of metalworking oil-in-water emulsions. Clean Technologies and Environmental Policy, 201012(1): 31–41

[4]

Jamaly SGiwa AHasan S W. Recent improvements in oily wastewater treatment: Progress, challenges, and future opportunities. Journal of Environmental Sciences (China)201537: 15–30

[5]

Cañizares PMartínez FJiménez CSáez CRodrigo M A. Coagulation and electrocoagulation of oil-in-water emulsions. Journal of Hazardous Materials2008151(1): 44–51

[6]

Gutiérrez GLobo AAllende DCambiella APazos CCoca JBenito J M. Influence of coagulant salt addition on the treatment of oil-in-water emulsions by centrifugation, ultrafiltration, and vacuum evaporation. Separation Science and Technology200843(7): 1884–1895

[7]

Vatai G NKrstić D MKorisa A KGáspára I LTekić M N. Ultrafiltration of oil-in-water emulsion: Comparison of ceramic and polymeric membranes. Desalination and Water Treatment20093(1-3): 162–168 

[8]

Vasanth DPugazhenthi GUppaluri R. Performance of low cost ceramic microfiltration membranes for the treatment of oil-in-water emulsions. Separation Science and Technology201348(6): 849–858

[9]

Karimnezhad HRajabi LSalehi EDerakhshan A AAzimi S. Novel nanocomposite Kevlar fabric membranes: Fabrication, characterization, and performance in oil/water separation. Applied Surface Science2014293: 275–286

[10]

Vibhandik A DMarathe K V. Removal of Ni(II) ions from wastewater by micellar enhanced ultrafiltration using mixed surfactants. Frontiers of Chemical Science and Engineering20148(1): 79–86

[11]

Mahmudov RChen CHuang C P. Functionalized activated carbon for the adsorptive removal of perchlorate from water solutions. Frontiers of Chemical Science and Engineering20159(2): 194–208

[12]

Twaiq FNasser M SOnaizi S A. Effect of the degree of template removal from mesoporous silicate materials on their adsorption of heavy oil from aqueous solution. Frontiers of Chemical Science and Engineering20148(4): 488–497

[13]

Chachou LGueraini YBouhalouane YPoncin SLi H ZBensadok K. Application of the electro-Fenton process for cutting fluid mineralization. Environmental Technology201536(15): 1924–1932

[14]

Benito J MRíos GOrtea EFernández ECambiella APazos CCoca J. Design and construction of a modular pilot plant for the treatment of oil-containing wastewaters. Desalination2002147(1-3): 5–10

[15]

Moulai M NTir M. Coupling flocculation with electroflotation for waste oil/water emulsion treatment. Optimization of the operating conditions. Desalination2004161(2): 115–121

[16]

Bensadok KBelkacem MNezzal G. Treatment of cutting oil/water emulsion by coupling coagulation and dissolved air flotation. Desalination2007206(1-3): 440–448

[17]

Gutiérrez GLobo ABenito J MCoca JPazos C. Treatment of a waste oil-in-water emulsion from a copper-rolling process by ultrafiltration and vacuum evaporation. Journal of Hazardous Materials2011185(2-3): 1569–1574

[18]

Santo C EVilar V J PBotelho C M SBhatnagar AKumar EBoaventura R A R. Optimization of coagulation-flocculation and flotation parameters for the treatment of a petroleum refinery effluent from a Portuguese plant. Chemical Engineering Journal, 2012183: 117–123

[19]

Jagadevan SDobson PThompson I P. Harmonisation of chemical and biological process in development of a hybrid technology for treatment of recalcitrant metalworking fluid. Bioresource Technology2011102(19): 8783–8789

[20]

Matos MGarcia C FSuarez M APazos CBenito J M. Treatment of oil-in-water emulsions by a destabilization/ultrafiltration hybrid process: Statistical analysis of operating parameters. Journal of Taiwan Institute of Chemical Engineers2015

[21]

Rodrigues Pires da Silva J, Merçon FFirmino da Silva LCerqueira A AXimango P BMarquesM R C. Evaluation of electrocoagulation as pre-treatment of oil emulsions, followed by reverse osmosis. Journal of Water Process Engineering20158: 126–135

[22]

Kobya MDemirbas EBayramoglu MSensoy M T. Optimization of electrocoagulation process for the treatment of metal cutting wastewaters with response surface methodology. Water, Air, and Soil Pollution2011215(1-4): 399–410

[23]

Jianzhong SXiuqing WXiaoyin W. Optimizing oily wastewater treatment via wet peroxide oxidation using response surface methodology. Journal of the Korean Chemical Society201458(1): 80–84

[24]

Yeber MPaul ESoto C. Chemical and biological treatments to clean oily wastewater: Optimization of the photocatalytic process using experimental design. Desalination and Water Treatment201247(1-3): 295–299

[25]

Ramin BBehrooz M. Modeling and optimization of cross-flow ultrafiltration using hybrid neural network-genetic algorithm approach. Journal of Industrial and Engineering Chemistry201420(2): 528–543

[26]

Jing LChen BZhang BLi P. Process simulation and dynamic control for marine oily wastewater treatment using UV irradiation. Water Research201581: 101–112

[27]

Gallan BGrossmann I E. Optimal design of real world industrial wastewater treatment networks. Computer-Aided Chemical Engineering201129: 1251–1255

[28]

Sueviriyapan NSiemanond KQuaglia AGani RSuriyapraphadilok U. The optimization-based design and synthesis of water network for water management in an industrial process: Refinery effluent treatment plant. Chemical Engineering Transactions201439: 133–138

[29]

Government of the Republic of Slovenia, Decree on the emission of substances and heat in the discharge of wastewater into waters and public sewage system. Ljubljana: Official Gazette of the Republic of Slovenia2012, <Date>No. 64/2012</Date>

[30]

Rosenthal R E. GAMS—A user’s guide. Washington: GAMS Development Corporation, 2015

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (410KB)

2418

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/