Underlying mechanism of the hydrothermal instability of Cu3(BTC)2 metal-organic framework
Nadeen Al-Janabi, Abdullatif Alfutimie, Flor R. Siperstein, Xiaolei Fan
Underlying mechanism of the hydrothermal instability of Cu3(BTC)2 metal-organic framework
Water induced decomposition of Cu3(BTC)2 (BTC= benzene-1,3,5-tricarboxylate) metal-organic framework (MOF) was studied using dynamic water vapour adsorption. Small-angle X-ray scattering, Fourier transform infrared spectroscopy and differential scanning calorimetry analyses revealed that the underlying mechanism of Cu3(BTC)2 MOF decomposition under humid streams is the interpenetration of water molecules into Cu-BTC coordination to displace organic linkers (BTC) from Cu centres.
metal-organic framework (MOF) / open metal sites (OMSs) / dynamic water vapour adsorption / hydrothermal stability
[1] |
Zhou H C, Long J R, Yaghi O M. Introduction to metal-organic frameworks. Chemical Reviews, 2012, 112(2): 673–674
|
[2] |
Chen Q, Chang Z, Song W C, Song H, Song H B, Hu T L, Bu X H. A controllable gate effect in cobalt(II) organic frameworks by reversible structure transformations. Angewandte Chemie International Edition, 2013, 52(44): 11550–11553
|
[3] |
Chui S S, Lo M F, Charmant J P, Opren A G, Williams I D. A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n. Science, 1999, 283(5405): 1148–1150
|
[4] |
Lin K S, Adhikari A K, Ku C N, Chiang C L, Kuo H. Synthesis and characterization of porous HKUST-1 metal organic frameworks for hydrogen storage. International Journal of Hydrogen Energy, 2012, 37(18): 13865–13871
|
[5] |
Li J R, Ma Y, McCarthy M C, Sculley J, Yu J, Jeong H K, Balbuena P B, Zhou H C. Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks. Coordination Chemistry Reviews, 2011, 255(15-16): 1791–1823
|
[6] |
Liu J, Thallapally P K, McGrail B P, Brown D R, Liu J. Progress in adsorption-based CO2 capture by metal-organic frameworks. Chemical Society Reviews, 2012, 41(6): 2308–2322
|
[7] |
Al-Janabi N, Hill P, Torrente-Murciano L, Garforth A, Gorgojo-Alonso P, Siperstein F, Fan X. Mapping the Cu-BTC metal-organic framework (HKUST-1) stability envelope in the presence of water vapour for CO2 adsorption from flue gases. Chemical Engineering Journal, 2015, 281: 669–677
|
[8] |
Low J J, Benin A I, Jakubczak P, Abrahamian J F, Faheem S A, Willis R R. Virtual high throughput screening confirmed experimentally: Porous coordination polymer hydration. Journal of the American Chemical Society, 2009, 131(43): 15834–15842
|
[9] |
Gul-E-Noor F, Jee B, Poeppl A, Hartmann M, Himsl D, Bertmer M. Effects of varying water adsorption on a Cu3(BTC)2 metal-organic framework (MOF) as studied by H1 and C13 solid-state NMR spectroscopy. Physical Chemistry Chemical Physics, 2011, 13(17): 7783–7788
|
[10] |
DeCoste J B, Peterson G W, Schindler B J, Killops K L, Browe M A, Mahle J J. The effect of water adsorption on the structure of the carboxylate containing metal-organic frameworks Cu-BTC, Mg-MOF-74, and UiO-66. Journal of Materials Chemistry A, 2013, 1(38): 11922–11932
|
[11] |
Sun X, Li H, Li Y, Xu F, Xiao J, Xia Q, Li Y, Li Z. A novel mechanochemical method for reconstructing the moisture-degraded HKUST-1. Chemical Communications, 2015, 51: 10835–10838
|
[12] |
Rezk A, Al-Dadah R, Mahmoud S, Elsayed A. Characterisation of metal organic frameworks for adsorption cooling. International Journal of Heat and Mass Transfer, 2012, 55(25-26): 7366–7374
|
[13] |
Schoenecker P M, Carson C G, Jasuja H, Flemming C J J, Walton K S. Effect of water adsorption on retention of structure and surface area of metal–organic frameworks. Industrial and Engineering Chemistry Research, 2012, 51(18): 6513–6519
|
[14] |
Gul-E-Noor F, Michel D, Krautscheid H, Haase J, Bertmer M. Time dependent water uptake in Cu3(BTC)2 MOF: Identification of different water adsorption states by 1H MAS NMR. Microporous and Mesoporous Materials, 2013, 180: 8–13
|
[15] |
Küsgens P, Rose M, Senkovska I, Fröde H, Henschel A, Siegle S, Kaskel S. Characterization of metal-organic frameworks by water adsorption. Microporous and Mesoporous Materials, 2009, 120(3): 325–330
|
[16] |
Shoaee M, Anderson M W, Attfield M P. Crystal growth of the nanoporous metal-organic framework HKUST-1 revealed by in situ atomic force microscopy. Angewandte Chemie International Edition, 2008, 47(44): 8525–8528
|
[17] |
Schlichte K, Kratzke T, Kaskel S. Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2. Microporous and Mesoporous Materials, 2004, 73(1-2): 81–88
|
[18] |
Prestipino C, Regli L, Vitillo J G, Bonino F, Damin A, Lamberti C, Zecchina A, Solari P L, Kongshaug K O, Bordiga S. Local structure of framework Cu(II) in HKUST-1 metallorganic framework: Spectroscopic characterization upon activation and interaction with adsorbates. Chemistry of Materials, 2006, 18(5): 1337–1346
|
[19] |
Nguyen L T L, Nguyen T T, Nguyen K D, Phan N T S. Metal-organic framework MOF-199 as an efficient heterogeneous catalyst for the aza-Michael reaction. Applied Catalysis A: General, 2012, 425-426: 44–52
|
[20] |
Müllera E A, Gubbins K E. Molecular simulation study of hydrophilic and hydrophobic behavior of activated carbon surfaces. Carbon, 1998, 36(10): 1433–1438
|
/
〈 | 〉 |