Orderly decorated nanostructural photoelectrodes with uniform spherical TiO2 particles for dye-sensitized solar cells

A. M. Bakhshayesh, S. S. Azadfar

PDF(2181 KB)
PDF(2181 KB)
Front. Chem. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (4) : 532-540. DOI: 10.1007/s11705-015-1549-8
RESEARCH ARTICLE
RESEARCH ARTICLE

Orderly decorated nanostructural photoelectrodes with uniform spherical TiO2 particles for dye-sensitized solar cells

Author information +
History +

Abstract

This study presents a novel nanostructural electrode made of 20-nm-diameter nanoparticles, which orderly decorated with 2-µm TiO2 particles, deposited by a new gel process. The decorated electrode (DE) is better than the non-decorated electrode (NE) in both light scattering and light harvesting, as confirmed by diffuse reflectance spectroscopy. X-ray diffraction reveals that both electrodes have a mixture of anatase and rutile phases. The dye-sensitized solar cell based on the decorated electrode shows the highest power conversion efficiency of 7.80% as a result of less recombination demonstrated by electrochemical impedance spectroscopy. From internal power conversion efficiency measurement, the external quantum efficiency of DE cell at 530 nm is 89%, which is higher than that of NE cell (77%).

Graphical abstract

Keywords

dye-sensitized solar cell / uniform particles / TiO2 gel process / light harvesting

Cite this article

Download citation ▾
A. M. Bakhshayesh, S. S. Azadfar. Orderly decorated nanostructural photoelectrodes with uniform spherical TiO2 particles for dye-sensitized solar cells. Front. Chem. Sci. Eng., 2015, 9(4): 532‒540 https://doi.org/10.1007/s11705-015-1549-8

References

[1]
O’Regan B, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353(6346): 737–740 
CrossRef Google scholar
[2]
Mohammadi M R, Bakhshayesh A M, Sadri F, Masroor M. Improved efficiency of dye-sensitized solar cells by design of a proper double layer photoanode electrodes composed of Cr-doped TiO2 transparent and light scattering layers. Journal of Sol-Gel Science and Technology, 2013, 67(1): 77–87 
CrossRef Google scholar
[3]
Wang Y Z, Chen E L, Lai H M, Lu B, Hu Z L, Qin X M, Shi W Z, Du G P. Enhanced light scattering and photovoltaic performance for dye-sensitized solar cells by embedding submicron SiO2/TiO2 core/shell particles in photoanode. Ceramics International, 2013, 39(5): 5407–5413 
CrossRef Google scholar
[4]
Xu J L, Li K, Shi W Y, Peng T Y. Rice-like brookite titania as an efficient scattering layer for nanosized anatase titania film-based dye-sensitized solar cells. Journal of Power Sources, 2014, 260: 233–242 
CrossRef Google scholar
[5]
Bakhshayesh A M, Mohammadi M R, Dadar H, Fray D J. Improved efficiency of dye-sensitized solar cells aided by corn-like TiO2 nanowires as the light scattering layer. Electrochimica Acta, 2013, 90: 302–308 
CrossRef Google scholar
[6]
Chen D H, Huang F Z, Cheng Y B, Caruso R A, Chen D H, Huang F Z, Cheng Y B, Caruso R A. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high-performance dye-sensitized solar cells. Advanced Materials, 2009, 21(21): 2206–2210 
CrossRef Google scholar
[7]
Bakhshayesh A M, Mohammadi M R, Fray D J. Controlling electron transport rate and recombination process of TiO2 dye-sensitized solar cells by design of double-layer films with different arrangement modes. Electrochimica Acta, 2012, 78: 384–391 
CrossRef Google scholar
[8]
Bakhshayesh A M, Mohammadi M R. The improvement of electron transport rate of TiO2 dye-sensitized solar cells using mixed nanostructures with different phase compositions. Ceramics International, 2013, 39(7): 7343–7353 
CrossRef Google scholar
[9]
Deepak T D, Anjusree G S, Thomas S, Arun T A, Nair S V, Sreekumaran Nair A. A review on materials for light scattering in dye-sensitized solar cells. RSC Advances, 2014, 4(34): 17615–17638 
CrossRef Google scholar
[10]
Usami A. Theoretical study of application of multiple scattering of light to a dye sensitized nanocrystalline photoelectrichemical cell. Chemical Physics Letters, 1997, 277(1-3): 105–108 
CrossRef Google scholar
[11]
Wang Z S, Kawauchi H, Kashima T, Arakawa H. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coordination Chemistry Reviews, 2004, 248(13-14): 1381–1389 
CrossRef Google scholar
[12]
Ferber J, Luther J. Computer simulations of light scattering and absorption in dye-sensitized solar cells. Solar Energy Materials and Solar Cells, 1998, 54(1-4): 265–275 
CrossRef Google scholar
[13]
Kang S H, Kim J Y, Kim H S, Koh H D, Lee J S, Sung Y E. Influence of light scattering particles in the TiO2 photoelectrode for solid-state dye-sensitized solar cell. Journal of Photochemistry and Photobiology A Chemistry, 2008, 200(2-3): 294–300 
CrossRef Google scholar
[14]
Liang J, Zhang G, Xia H, Sun W. Room-temperature fabrication of dual-functional hierarchical TiO2 spheres for dye-sensitized solar cells. RSC Advances, 2014, 4(25): 12649–12652 
CrossRef Google scholar
[15]
Zhang Q, Chou T P, Russo B, Jenekhe S A, Cao G. Aggregation of ZnO nanocrystallites for high conversion efficiency in dye-sensitized solar cells. Angewandte Chemie International Edition, 2008, 47(13): 2402–2406 
CrossRef Google scholar
[16]
Bakhshayesh A M, Mohammadi M R. Development of nanostructured porous TiO2 thick film with uniform spherical particles by a new polymeric gel process for dye-sensitized solar cell applications. Electrochimica Acta, 2013, 89: 90–97 
CrossRef Google scholar
[17]
Ito S, Liska P, Pechy P, Bach U, Nazeeruddin M K, Kay A, Zekeeruddin S M, Grätzel M. Control of dark current in photoelectrochemical (TiO2/I−I3‒) and dye-sensitized solar cells. Chemical Communications, 2005, 34(34): 4351–4353 
CrossRef Google scholar
[18]
Jeong N C, Farha O K, Hupp J T. A convenient Route to high area, nanoparticulate TiO2 photoelectrodes suitable for high-efficiency energy conversion in dye-sensitized solar cells. Langmuir, 2011, 27(5): 1996–1999 
CrossRef Google scholar
[19]
Spurr R A, Myers H. Quantitative analysis of anatase-rutile mixtures with anX-ray diffractometer. Analytical Chemistry, 1957, 29(5): 760–762 
CrossRef Google scholar
[20]
Cullity B D, Stock S R. Elements of X-ray diffraction. Lawrence: Prentice Hall, 2001, 96102<?Pub Caret?>
[21]
Yang L, Lin Y, Jia J, Xiao X, Li X, Zhou X. Light harvesting enhancement for dye-sensitized solar cells by novel anode containing cauliflower-like TiO2 spheres. Journal of Power Sources, 2008, 182(1): 370–376 
CrossRef Google scholar
[22]
Feigenbrugel C, Loew S L, Calvé P, Mirabel J. Near-UV molar absorptivities ofacetone, alachlor, metolachlor, diazinon and dichlorvos in aqueous solution. Journal of Photochemistry and Photobiology A Chemistry, 2005, 174(1): 76–81 
CrossRef Google scholar
[23]
Longo C, Freitas J, De Paoli M A. Performance and stability of TiO2 dye solar cells assembled with flexible electrodes and a polymer electrolyte. Journal of Photochemistry and Photobiology A Chemistry, 2003, 159(1): 33–39 
CrossRef Google scholar
[24]
Lin Y P, Lin S Y, Lee Y C, Chen Y W. High surface area electrospun prickle-like hierarchical anatase TiO2 nanofibers for dye-sensitized solar cell photoanodes. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2013, 1(34): 9875–9884 
CrossRef Google scholar
[25]
Schlichthorl G, Huang S Y, Sprague J, Frank A J. Band-edge movement and recombination kinetics in dye-sensitized nanocrystalline TiO2 solar cells: A study by intensity modulated photovoltage spectroscopy. Journal of Physical Chemistry B, 1997, 101(41): 8141–8155 
CrossRef Google scholar
[26]
Zhang L W, Fu H B, Zhu Y F. Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon. Advanced Functional Materials, 2008, 18(15): 2180–2189 
CrossRef Google scholar
[27]
Martinson A A B F, Goes M S, Fabregat-Santiago F, Bisquert J, Pellin M J, Hupp J T. Electron transport in dye-sensitized solar cells based on ZnO nanotubes: Evidence for highly efficient charge collection and exceptionally rapid dynamics. Journal of Physical Chemistry A, 2009, 113(16): 4015–4021 
CrossRef Google scholar
[28]
Fabregat-Santiago F, Bisquert J, Palomares E, Otero L, Kuang D, Zakeeruddin S M, Gratzel M. Correlation between photovoltaic performance and impedance spectroscopy of dye-sensitized solar cells based on ionic liquids. Journal of Physical Chemistry C, 2007, 111(17): 6550–6560 
CrossRef Google scholar
[29]
Tsai C H, Chang C W, Tsai Y T, Lu C Y, Chen M C, Huang T W, Wu C C. Novel three-layer TiO2 nanoparticle stacking architecture for efficient dye-sensitized solar cells. Organic Electronics, 2013, 14(11): 2866–2874 
CrossRef Google scholar

Acknowledgments

Iran Nanotechnology Initiative Council is gratefully acknowledged for partially supporting this research.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(2181 KB)

Accesses

Citations

Detail

Sections
Recommended

/