Transition metal-doped heteropoly catalysts for the selective oxidation of methacrolein to methacrylic acid

Yanxia Zheng , Heng Zhang , Lei Wang , Suojiang Zhang , Shaojun Wang

Front. Chem. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (1) : 139 -146.

PDF (476KB)
Front. Chem. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (1) : 139 -146. DOI: 10.1007/s11705-015-1548-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Transition metal-doped heteropoly catalysts for the selective oxidation of methacrolein to methacrylic acid

Author information +
History +
PDF (476KB)

Abstract

Heteropoly compounds with the general formula Cs1M0.5x+H3‒0.5xP1.2Mo11VO40 (M= Fe, Co, Ni, Cu or Zn) and Cs1CuyH3‒2yP1.2Mo11VO40 (y = 0.1, 0.3 or 0.7) were synthesized and then used as catalysts for the selective oxidation of methacrolein to methacrylic acid. The effects of the transition metals on the structure and activity of the catalysts were investigated. FTIR spectra showed that the transition metal-doped catalysts maintained the Keggin structure of the undoped catalysts. X-ray diffraction results indicated that before calcination, the catalysts doped with Fe and Cu had cubic secondary structures, while the catalysts doped with Co, Ni or Zn had both triclinic and cubic phases and the Co-doped catalyst had the highest content of the triclinic form. Thermal treatment can decrease the content of the triclinic phase. NH3 temperature-programmed desorption and H2 temperature-programmed reduction results showed that the transition metals changed the acid and redox properties of the catalysts. The addition of Fe or Cu had positive effects on the activities of the catalyst which is due to the improvement of the electron transfer between the Fe or Cu and the Mo. The effects of the copper content on structure and catalytic activity were also investigated. The Cs1Cu0.3H2P1.2Mo11VO40 catalyst had the best performance for the selective oxidation of methacrolein to methacrylic acid.

Graphical abstract

Keywords

heteropoly compounds / transition metals / selective oxidation / methacrolein

Cite this article

Download citation ▾
Yanxia Zheng, Heng Zhang, Lei Wang, Suojiang Zhang, Shaojun Wang. Transition metal-doped heteropoly catalysts for the selective oxidation of methacrolein to methacrylic acid. Front. Chem. Sci. Eng., 2016, 10(1): 139-146 DOI:10.1007/s11705-015-1548-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Langpape MMillet J M MOzkan U SDelichere P. Study of cesium or cesium-transition metal-substituted Keggin-type phosphomolybdic acid as isobutane oxidation catalysts. Journal of Catalysis1999182(1): 148–155

[2]

Black J BClaydon N JGai P LScott J DSerwicke E MGoodenough J B. Acrolein oxidation over 12-molybdophosphates: I. Characterization of the catalyst. Journal of Catalysis1987106(1): 1–15

[3]

Shishido TInoue AKonishi TMatsuura ITakehira K. Oxidation of isobutane over Mo-V-Sb mixed oxide catalyst. Chemistry Letters200068: 215–221

[4]

Mizuno NMisono M. Pore structure and surface-area of CsxH3‒xPMo12O40 (x = 0‒3, M= W, MO). Chemistry Letters198716(5): 967–970

[5]

Kendell S MBrown T C. Detailed product and kinetic analysis for the low-pressure selective oxidation of isobutane over phosphomolybdic acid. Reaction Kinetics, Mechanisms and Catalysis201099(2): 251–268

[6]

Marosi LCox GTenten AHibst HIn situ X R D investigations of heteropolyacid catalysts in the methacrolein to methacrylic acid oxidation reaction: Structural changes during the activation/deactivation process. Journal of Catalysis2000194(1): 140–145

[7]

Kendell S MBrown T CBurns R C. Accurate low-pressure kinetics for isobutane oxidation over phosphomolybdic acid and copper(II) phosphomolybdates. Catalysis Today2008131(1-4): 526–532

[8]

Komaya TMisono M. Activity patterns of H3PMO12O40 and its alkali salts for oxidation reactions. Chemistry Letters198312(8): 1177–1180

[9]

Konishi YSakata KMisono MYoneda Y. Catalysis by heteropoly compounds oxidation of methacrolein to methacrylic-acid over 12-molybdophosphoric acid. Journal of Catalysis198277(1): 169–179

[10]

Deuser L MGaube J WMartin F GHibst H. Effects of Cs and V on heteropolyacid catalysts in methacrolein oxidation. Studies in Surface Science and Catalysis1996101: 981–990

[11]

Mizuno NWatanabe TMisono M. Catalysis by heteropoly compounds oxidation of methacrylaldehyde over 12-molybdophosphoric acid and its alkali salts. Bulletin of the Chemical Society of Japan199164(1): 243–247

[12]

Li YWei ZGao FKovarik LBaylon R A LPeden C H FWang Y. Effect of oxygen defects on the catalytic performance of VOx/CeO2 catalysts for oxidative dehydrogenation of methanol. ACS Catalysis20155(5): 3006–3012

[13]

Li YWei ZGao FKovarik LPeden C H FWang Y. Effects of CeO2 support facets on VOx/CeO2 catalysts in oxidative dehydrogenation of methanol. Journal of Catalysis2014315: 15–24

[14]

Li YWei ZGao FKovarik LPeden C H FWang Y. Effect of sodium on the catalytic properties of VOx/CeO2 catalysts for oxidative dehydrogenation of methanol. Journal of Physical Chemistry C2013117(11): 5722–5729

[15]

Langpape MMillet J M M. Effect of iron counter-ions on the redox properties of the Keggin-type molybdophosphoric heteropolyacid Part I. An experimental study on isobutane oxidation catalysts. Applied Catalysis A2000200(1-2): 89–101

[16]

Zhang HYan R YYang YDiao Y YWang LZhang S J. Investigation of Cu- and Fe-doped CsH3PMo11VO40 heteropoly compounds for the selective oxidation of methacrolein to methacrylic acid. Industrial & Engineering Chemistry Research201352(12): 4484–4490

[17]

Mizun NSuh D JHan WKudo T. Catalytic performance of Cs2.5Fe0.08H1.26PVMo11O40 for direct oxidation of lower alkanes. Journal of Molecular Catalysis A1996114(1-3): 309–317

[18]

Yang J ILee D WLee J HHyun J CLee K Y. Selective and high catalytic activity of CsnH4−nPMo11VO40 (n>3) for oxidation of ethanol. Applied Catalysis A2000195: 123–127

[19]

Kendell S MAlston A SBallam N JBrown T CBurns R C. Structural and activity investigation into Al3+, La3+ and Ce3+ addition to the phosphomolybdate heteropolyanion for isobutane selective oxidation. Catalysis Letters2011141(3): 374–390

[20]

Bayer RMarchal CLiu F XTeze AHerve G. Catalysis of the oxidation of isobutyric acid by vanadyl, copper and mixed vanadyl-copper salts of H3[PMo12O40] and H4Journal of Molecular Catalysis A1996114(1-3): 277–286

[21]

Stytsenko V DLee W HLee J W. Catalyst design for methacrolein oxidation to methacrylic acid. Reaction Kinetics and Catalysis Letters200142(2): 212–216

[22]

Sun MZhang J ZCao C JZhang Q HWang YWan H L. Significant effect of acidity on catalytic behaviors of Cs-substituted polyoxometalates for oxidative dehydrogenation of propane. Applied Catalysis A2008349(1-2): 212–221

[23]

Villabrille PRomanelli GVazquez PCáceres C. Vanadium-substituted Keggin heteropolycompounds as catalysts for ecofriendly liquid phase oxidation of 2,6-dimethylphenol to 2,6-dimethyl-1,4-benzoquinone. Applied Catalysis A2004270(1-2): 101–111

[24]

Li X KLei YJiang QZhao JJi W JZhang Z BChen Y. Partial oxidation of propane over Keggin type molybdovanadophosphoric acids. Acta Chimica Sinica200563: 1049–1054

[25]

Ilkenhans THerzog BBraun TSchlogl R. The nature of the active phase in the heteropolyacid catalyst H4PVMo11O40·32H2O used for the selective oxidation of isobutyric acid. Journal of Catalysis1995153(2): 275–292

[26]

Marosi LPlatero E ECifre JArean C O. Thermal dehydration of H3<?A3B2 h=-0.3h?>+xPVxM12‒xO40·yH2O Keggin type heteropolyacids; formation, thermal stability and structure of the anhydrous acids H3PM12O40 of the corresponding anhydrides PM12O38.5 and of a novel trihydrate H3PW12O40·3H2O. Journal of Materials Chemistry200010(8): 1949–1955

[27]

Deng QJiang S LCai T JPeng Z SFang Z J. Selective oxidation of isobutane over HxFe0.12Mo11VPAs0.3Oy heteropoly compound catalyst. Journal of Molecular Catalysis A2005229(1-2): 165–170

[28]

Li X KZhao JJi W JZhang Z BChen YAu C TScott HHartmut H. Effect of vanadium substitution in the cesium salts of Keggin-type heteropolyacids on propane partial oxidation. Journal of Catalysis2006237(1): 58–66

[29]

Damyanova SSpojakina AJiratova K. Effect of mixed titania-alumina supports on the phase composition of NiMo/TiO2 single bond Al2O3 catalysts. Applied Catalysis A1995125(2): 257–269

[30]

Damyanova SCubeiro M LFierro J L G. Acid-redox properties of titania-supported 12-molybdophosphates for methanol oxidation. Journal of Molecular Catalysis A1999142(1): 85–100

[31]

Misono MNojiri N. Recent Progress in Catalytic Technology in Japan. Applied Catalysis A199064: 1–30

[32]

Huynh QMillet J M M. Characterization of iron counter-ion environment in bulk and supported phosphomolybdic acid based catalysts. Journal of Physics and Chemistry of Solids200566(5): 887–894

[33]

Mizuno NTateishi MIwamoto M. Direct oxidation of isobutane into methacrylic acid and methacrolein over Cs2.5Ni0.08-substitute H3PMoI2O40Chemical Communications199412: 1411–1412

[34]

Mizuno NYahiro H. Oxidation of isobutane catalyzed by partially salified cesium molybdovanadophosphoric acids. Journal of Physical Chemistry B1998102(2): 437–443

[35]

Putluru S S RMossin SRiisager AFehrmann R. Heteropoly acid promoted Cu and Fe catalysts for the selective catalytic reduction of NO with ammonia. Catalysis Today2011176(1): 292–297

[36]

Kanno MYasukawa TNinomiya WOoyachi KKamiya Y. Catalytic oxidation of methacrolein to methacrylic acid over silica-supported 11-molybdo-1-vanadophosphoric acid with different heteropolyacid loadings. Journal of Catalysis2010273(1): 1–8

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (476KB)

2656

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/