Preparation and swelling properties of a starch-g-poly(acrylic acid)/organo-mordenite hydrogel composite

Yan Zhang , Pingqiang Gao , Lin Zhao , Yizhong Chen

Front. Chem. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (1) : 147 -161.

PDF (1136KB)
Front. Chem. Sci. Eng. ›› 2016, Vol. 10 ›› Issue (1) : 147 -161. DOI: 10.1007/s11705-015-1546-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Preparation and swelling properties of a starch-g-poly(acrylic acid)/organo-mordenite hydrogel composite

Author information +
History +
PDF (1136KB)

Abstract

A novel hydrogel composite was prepared via inverse suspension polymerization using starch, acrylic acid and organo-mordenite micropowder with the crosslinker, N,N′-methylenebisacrylamide and the initiator, potassium persulfate. Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, scanning electron microscopy, and energy dispersive spectroscopy confirmed that the acrylic acid was grafted onto the backbone of the corn starch, that the organo-mordenite participated in the polymerization, and that the addition of organo-mordenite improved the surface morphology of the hydrogel composite. The swelling capacity of the hydrogel composite was evaluated in distilled water, and solutions with different pH values, and various salt solutions. It was found that the incorporation of 10 wt-% organo-mordenite enhanced the water absorbency by 144% (from 268 to 655 g·g−1) and swelling was extremely sensitive to the pH values, the concentration of the salt solution and cation type. Swelling kinetics and water diffusion mechanism of the hydrogel composite in distilled water were also discussed. Moreover, the hydrogel composite showed excellent reversibility of water absorption even after five repetitive cycles and the hydrogel composite exhibited significant environmental-responsiveness by changing the swelling medium from distilled water to 0.1 mol·L−1 NaCl solution. In addition, the loading and release of urea by the hydrogel composite were tested and the nutrient-slow-release capability of this material was found to be suitable for many potential applications.

Graphical abstract

Keywords

hydrogel composite / environmental-responsiveness / organo-mordenite / starch / acrylic acid

Cite this article

Download citation ▾
Yan Zhang, Pingqiang Gao, Lin Zhao, Yizhong Chen. Preparation and swelling properties of a starch-g-poly(acrylic acid)/organo-mordenite hydrogel composite. Front. Chem. Sci. Eng., 2016, 10(1): 147-161 DOI:10.1007/s11705-015-1546-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Seetapan NWongsawaeng JKiatkamjornwong S. Gel strength and swelling of acrylamide-protic acid superabsorbent copolymers. Polymers for Advanced Technologies201122(12): 1685–1695

[2]

Raju K MRaju M P. Synthesis and swelling properties of superabsorbent copolymers. Advances in Polymer Technology200120(2): 146–154

[3]

Swain S KShur BPatra S K. Poly(acrylamide-co-vinyl alcohol)—superabsorbent materials reinforced by modified clay. Polymer Composites201334(11): 1794–1800

[4]

Li AWang A. Synthesis and properties of clay-based superabsorbent composite. European Polymer Journal200541(7): 1630–1637

[5]

Lokhande H TGotmare V D. Utilization of textile loomwaste as a highly absorbent polymer through graft co-polymerization. Bioresource Technology199968(3): 283–286

[6]

Kazanskii K SDubrovskii S A. Chemistry and physics of “agricultural” hydrogels. Advances in Polymer Science1992104: 97–133

[7]

Mohana R KPadmanabha R M. Synthesis of novel superabsorbing copolymers for agricultural and horticultural applications. Polymer International200150(8): 946–951

[8]

Chen L PYing K LHsu K C. Amphibious water-soluble copolymer. I. Its synthesis and dispersing ability on barium titanate. Journal of Applied Polymer Science200492(4): 2232–2239

[9]

Zhang Y HWang L MLi X HHe P X. Salt-resistant superabsorbents from inverse-suspension polymerization of PEG methacrylate, acryamide and partially neutralized acrylic acid. Journal of Polymer Research201118(2): 157–161

[10]

Hao LYang HLei Z. Synthesis and properties of thermo-responsive macroporous PAM-co-PNIPAM microspheres. Materials Letters201270: 83–85

[11]

Wang GLi MChen X. Inverse suspension polymerization of sodium acrylate. Journal of Applied Polymer Science199765(4): 789–794

[12]

Zhang YGu QYin JWang ZHe P. Effect of organic montmorillonite type on the swelling behavior of superabsorbent nanocomposites. Advances in Polymer Technology201433(2): 21400–21407

[13]

Karlsson M ELeeman A MBjörck I MEliasson A C. Some physical and nutritional characteristics of genetically modified potatoes varying in amylose/amylopectin ratios. Food Chemistry2007100(1): 136–146

[14]

Pereira A G BPaulino A TNakamura C VBritta E ARubira A FMuniz E C. Effect of starch type on miscibility in poly(ethylene oxide)(PEO)/starch blends and cytotoxicity assays. Materials Science and Engineering C201131(2): 443–451

[15]

Spagnol CRodrigues F HPereira A GFajardo A RRubira A FMuniz E C. Superabsorbent hydrogel nanocomposites based on starch-g-poly (sodium acrylate) matrix filled with cellulose nanowhiskers. Cellulose201219(4): 1225–1237

[16]

Al EGüçlü Gİyim T BEmik SÖzgümüş S. Synthesis and properties of starch-graft-acrylic acid/Na-montmorillonite superabsorbent nanocomposite hydrogels. Journal of Applied Polymer Science2008109(1): 16–22

[17]

Lanthong PNuisin RKiatkamjornwong S. Graft copolymerization, characterization, and degradation of cassava starch-g-acrylamide/itaconic acid superabsorbents. Carbohydrate Polymers200666(2): 229–245

[18]

Irani MIsmail HAhmad Z. Preparation and properties of linear low-density polyethylene-g-poly(acrylic acid)/organo-montmorillonite superabsorbent hydrogel composites. Polymer Testing201332(3): 502–512

[19]

Subhas SSamar C DDipak R B. Synthesis and characterization of nanoclay-polymer composites from soil clay with respect to their water-holding capacities and nutrient-release behavior. Journal of Applied Polymer Science2014131(6): 3351–3359

[20]

Macias A FSpinola A GMendoza T M HGonzalez F DZelaya F P. Effect of zeolite (clinoptilolite and mordenite) amended andosols on soil chemical environment and growth of oat. Interciencia200732(10): 692–696

[21]

Ramesh KReddy D DBiswas A KRao A S. Zeolites and their potential uses in agriculture. Advances in Agronomy2011113: 215–236

[22]

Komaromine M KLoksa GCsereklye K EBardoczyne E SKallai S. Use of zeolite to improve soil amelioration and takes effects on microclimate. Cereal Research Communications200836: 1783–1786

[23]

Oste L ALexmond T MVan Riemsdijk W H. Metal immobilization in soils using synthetic zeolites. Journal of Environmental Quality200231(3): 813–821

[24]

Khoonsap SAmnuaypanich S. Mixed matrix membranes prepared from poly(vinyl alcohol) (PVA) incorporated with zeolite 4A-graft-poly(2-hydroxyethylmethacrylate) (zeolite-g-PHEMA) for the pervaporation dehydration of water-acetone mixtures. Journal of Membrane Science2011367(1-2): 182–189

[25]

Guo L PChen Y ZYang J. The surface modification of zeolite-4A by CTAB and its properties. Journal of Wuhan University of Technology-Material199914: 18–23 (in Chinese)

[26]

Jin S PYue G RFeng LHan Y QYu X HZhang Z H. Preparation and properties of a coated slow-release and water-retention biuret phosphoramide fertilizer with superabsorbent. Journal of Agricultural and Food Chemistry201159(1): 322–327

[27]

Xie L HLiu M ZNi B LWang F Y. New environment-friendly use of wheat straw in slow-release fertilizer formulations with the function of superabsorbent. Industrial & Engineering Chemistry Research201251(10): 3855–3862

[28]

Li AZhang J PWang A Q. Preparation and slow-release property of a poly(acrylic acid)/attapulgite/sodium humate superabsorbent composite. Journal of Applied Polymer Science2007103(1): 37–45

[29]

Ladha J KPathak HKrupnik T JSix J JVan Kessel C. Efficiency of fertilizer nitrogen in cereal production: Retrospects and prospects. Advances in Agronomy200587: 85–156

[30]

Liu M ZZhan F LWu LGuo M Y. Preparation of slow release urea fertilizer with preservation of soil moisture. Journal of Polymer Materials200421(2): 213–220

[31]

Wang Y FLiu M ZNi B LXie L H. κ-Karrageenan-sodium alginate beads and superabsorbent coated nitrogen fertilizer with slow-release, water-retention, and anticompaction properties. Industrial & Engineering Chemistry Research201251(3): 1413–1422

[32]

Liu M ZLiang RZhan F LLiu ZNiu A Z. Synthesis of a slow-release and superabsorbent nitrogen fertilizer and its properties. Polymers for Advanced Technologies200617(6): 430–438

[33]

Zhang YZhao LMa KMao G Z. The surface modification of zeolite 4a and its effect on the water-absorption capability of starch-g-poly(acrylic acid) composite. Clays and Clay Minerals201462(3): 211–223

[34]

Subhas SSamar C DDipak R B. Synthesis and characterization of nanoclay-polymer composites from soil clay with respect to their water-holding capacities and nutrient-release behavior. Journal of Applied Polymer Science2014131(6): 3351–3359

[35]

Watt G WChrisp J D. Spectrophotometric method for determination of urea. Analytical Chemistry195426(3): 452–453

[36]

Zhang M YCheng Z QZhao T QLiu M ZHu M JLi J F. Synthesis, characterization, and swelling behaviors of salt-sensitive maize bran-poly(acrylic acid) superabsorbent hydrogel. Journal of Agricultural and Food Chemistry201462(35): 8867–8874

[37]

Silverstein R MWebster F X. Spectrometric Identification of Organic Compounds. 6th ed. New York: Wiley, 1998

[38]

Lamberti CBordiga SZecchina ASalvalaggio MGeobaldo FAreán C O. XANES, EXAFS and FTIR characterization of copper-exchanged mordenite. Journal of the Chemical Society, Faraday Transactions199894(10): 1519–1525

[39]

Rožić MMiljanić S. Sorption of HDTMA cations on croatian natural mordenite tuff. Journal of Hazardous Materials2011185(1): 423–429

[40]

Li Z HJiang W THong H L. An FTIR investigation of hexadecyltrimethylammonium intercalation into rectorite. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy200871(4): 1525–1534

[41]

Pourjavadi ASoleyman R. Novel high capacity swelling superabsorbent composite and its potential for controlled release of fertilizers. Iranian Journal of Chemistry and Chemical Engineering-International English Edition201029(4): 113–123

[42]

Kaur ISharma M. Synthesis and characterization of graft copolymers of Sago starch and acrylic acid. Stärke201264(6): 441–451

[43]

Zhang J PChen HWang A Q. Study on superabsorbent composite. III. Swelling behaviors of polyacrylamide/attapulgite composite based on acidified attapulgite and organo-attapulgite. European Polymer Journal200541(10): 2434–2442

[44]

Wang W BXu J XWang A Q. A pH-, salt- and solvent-responsive carboxymethylcellulose-g-poly(sodium acrylate)/medical stone superabsorbent composite with enhanced swelling and responsive properties. Express Polymer Letters20115(5): 385–400

[45]

Wu JWei YLin JLin S. Study on starch-graft-acrylamide/mineral powder superabsorbent composite. Polymer200344(21): 6513–6520

[46]

Treacy M M JHiggins J B. Collection of simulated XRD powder patterns for zeolites. 5th ed. Amsterdam: Elsevier2007, 284

[47]

Mithilesh YSomit K SKyong Y R. Synthesis of partially hydrolyzed graft copolymer (H-Ipomoea hederacea seed gum-g-polyacrylonitrile). Carbohydrate Polymers201395(1): 471–478

[48]

Zhang JLi AWang A. Study on superabsorbent composite. VI. Preparation, characterization and swelling behaviors of starch phosphate-graft-acrylamide/attapulgite superabsorbent composite. Carbohydrate Polymers200665(2): 150–158

[49]

Rashidzadeh AOlad ASalari DReyhanitabar A. On the preparation and swelling properties of hydrogel nanocomposite based on Sodium alginate-g-poly(acrylic acid-co-acrylamide)/clinoptilolite and its application as slow release fertilizer. Journal of Polymer Research201421(2): 1–15

[50]

Amnuaypanich SPatthana JPhinyocheep P. Mixed matrix membranes prepared from natural rubber/poly(vinyl alcohol) semi-interpenetrating polymer network (NR/PVA semi-IPN) incorporating with zeolite 4A for the pervaporation dehydration of water-ethanol mixtures. Chemical Engineering Science200964(23): 4908–4918

[51]

Elazzouzi H SNishiyama YPutaux J LHeux LDubreuil FRochas C. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules20089(1): 57–65

[52]

Schott H. Swelling kinetics of polymers. Journal of Pharmaceutical Sciences199281(5): 467–470

[53]

Li SLiu XZou TXiao W. Removal of cationic dye from aqueous solution by a macroporous hydrophobically modified poly(acrylic acid-acrylamide) hydrogel with enhanced swelling and adsorption properties. Clean-Soil Air Water201038(4): 378–386

[54]

Kasgoz HDurmus A. Dye removal by a novel hydrogel-clay nanocomposite with enhanced swelling properties. Polymers for Advanced Technologies200819(7): 838–845

[55]

Mujumdar S KSiegel R A. Introduction of pH-sensitivity into mechanically strong nanoclay composite hydrogels based on N-isopropylacrylamide. Journal of Polymer Science. Part A, Polymer Chemistry200846(19): 6630–6640

[56]

Liang RYuan HXi GZhou Q. Synthesis of wheat straw-g-poly(acrylic acid) superabsorbent composites and release of urea from it. Carbohydrate Polymers200977(2): 181–187

[57]

Joseph J G. Polymeric gels and hydrogels for biomedical and pharmaceutical applications. Polymers for Advanced Technologies200921: 27–47

[58]

Flory P J. Principles of Polymer Chemistry. New York: Cornell University Press, 1953

[59]

Zhang J PLi AWang A Q. Study on superabsorbent composite. V. Synthesis, swelling behaviors and application of poly(acrylic acid-co-acrylamide)/sodium humate/attapulgite superabsorbent composite. Polymers for Advanced Technologies200516(11): 813–820

[60]

Bardajee G RPourjavadi ASoleyman R. Irradiation synthesis of biopolymer-based superabsorbent hydrogel: Optimization using the Taguchi method and investigation of its swelling behavior. Advances in Polymer Technology200928(2): 131–140

[61]

Xie JLiu XLiang JLuo Y S. Swelling properties of superabsorbent poly(acrylic acid-co-acrylamide) with different crosslinkers. Journal of Applied Polymer Science2009112(2): 602–608

[62]

Zhang M YCheng Z QLiu M ZZhang Y QHu M JLi J F. Synthesis and properties of a superabsorbent from an ultraviolet‐irradiated waste nameko mushroom substrate and poly(acrylic acid). Journal of Applied Polymer Science2014131(13): 4525–4529

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1136KB)

4230

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/