Transformer2 proteins protect breast cancer cells from accumulating replication stress by ensuring productive splicing of checkpoint kinase 1
Andrew Best, Katherine James, Gerald Hysenaj, Alison Tyson-Capper, David J. Elliott
Transformer2 proteins protect breast cancer cells from accumulating replication stress by ensuring productive splicing of checkpoint kinase 1
Increased expression levels of the RNA splicing regulator Transformer2β (abbreviated Tra2β) have been reported in several types of cancer. Recent work has revealed an intimate cross-regulation between Tra2β and the highly similar Tra2α protein in human breast cancer cells, though these two proteins are encoded by separate genes created by a gene duplication that occurred over 500 million years ago. This cross-regulation involves splicing control of a special class of exons, called poison exons. Down-regulation of Tra2β reduces splicing inclusion of a poison exon in the mRNA encoding Tra2α, thereby up-regulating Tra2α protein expression. This buffers any splicing changes that might be caused by individual depletion of Tra2β alone. Discovery of this cross-regulation pathway, and its by-pass by joint depletion of both human Tra2 proteins, revealed Tra2 proteins are essential for breast cancer cell viability, and led to the identification of important targets for splicing control. These exons include a critical exon within the checkpoint kinase 1 (CHK1) gene that plays a crucial function in the protection of cancer cells from replication stress. Breast cancer cells depleted for Tra2 proteins have reduced CHK1 protein levels and accumulate DNA damage. These data suggest Tra2 proteins and/or their splicing targets as possible cancer drug targets.
RNA splicing / gene expression / breast cancer / DNA damage / CHK1
[1] |
Eccles S A, Aboagye E O, Ali S, Anderson A S, Armes J, Berditchevski F, Blaydes J P, Brennan K, Brown N J, Bryant H E, Bundred N J, Burchell J M, Campbell A M, Carroll J S, Clarke R B, Coles C E, Cook G J, Cox A, Curtin N J, Dekker L V, Silva Idos S, Duffy S W, Easton D F, Eccles D M, Edwards D R, Edwards J, Evans D, Fenlon D F, Flanagan J M, Foster C, Gallagher W M, Garcia-Closas M, Gee J M, Gescher A J, Goh V, Groves A M, Harvey A J, Harvie M, Hennessy B T, Hiscox S, Holen I, Howell S J, Howell A, Hubbard G, Hulbert-Williams N, Hunter M S, Jasani B, Jones L J, Key T J, Kirwan C C, Kong A, Kunkler I H, Langdon S P, Leach M O, Mann D J, Marshall J F, Martin L, Martin S G, Macdougall J E, Miles D W, Miller W R, Morris J R, Moss S M, Mullan P, Natrajan R, O’Connor J P, O’Connor R, Palmieri C, Pharoah P D, Rakha E A, Reed E, Robinson S P, Sahai E, Saxton J M, Schmid P, Smalley M J, Speirs V, Stein R, Stingl J, Streuli C H, Tutt A N, Velikova G, Walker R A, Watson C J, Williams K J, Young L S, Thompson A M. Critical research gaps and translational priorities for the successful prevention and treatment of breast cancer. Breast Cancer Research, 2013, 15(5): R92
|
[2] |
Bonnal S, Vigevani L, Valcarcel J. The spliceosome as a target of novel antitumour drugs. Nature Reviews. Drug Discovery, 2012, 11(11): 847–859
|
[3] |
Oltean S, Bates D O. Hallmarks of alternative splicing in cancer. Oncogene, 2014, 33(46): 5311–8
|
[4] |
Will C L, Luhrmann R. Spliceosome structure and function. Cold Spring Harbor Perspectives in Biology, 2011, 3(7): a003707
|
[5] |
Wang G S, Cooper T A. Splicing in disease: Disruption of the splicing code and the decoding machinery. Nature Reviews. Genetics, 2007, 8(10): 749–761
|
[6] |
Fu X D, Ares M Jr. Context-dependent control of alternative splicing by RNA-binding proteins. Nature Reviews. Genetics, 2014, 15(10): 689–701
|
[7] |
Jangi M, Sharp P A. Building robust transcriptomes with master splicing factors. Cell, 2014, 159(3): 487–498
|
[8] |
Kelemen O, Convertini P, Zhang Z, Wen Y, Shen M, Falaleeva M, Stamm S. Function of alternative splicing. Gene, 2013, 514(1): 1–30
|
[9] |
Venables J P. Aberrant and alternative splicing in cancer. Cancer Research, 2004, 64(21): 7647–7654
|
[10] |
Shkreta L, Bell B, Revil T, Venables J P, Prinos P, Elela S A, Chabot B. Cancer-Associated Perturbations in Alternative Pre-messenger RNA Splicing. Cancer Research and Treatment, 2013, 158: 41–94
|
[11] |
Watermann D O, Tang Y, Zur Hausen A, Jager M, Stamm S, Stickeler E. Splicing factor Tra2-β1 is specifically induced in breast cancer and regulates alternative splicing of the CD44 gene. Cancer Research, 2006, 66(9): 4774–4780
|
[12] |
Best A, Dagliesh C, Ehrmann I, Kheirollahi-Kouhestani M, Tyson-Capper A, Elliott D J. Expression of Tra2 β in Cancer Cells as a Potential Contributory Factor to Neoplasia and Metastasis. Int J Cell Biol, 2013, 2013: 843781
|
[13] |
Best A, Dalgliesh C, Kheirollahi-Kouhestani M, Danilenko M, Ehrmann I, Tyson-Capper A, Elliott D J. Tra2 protein biology and mechanisms of splicing control. Biochemical Society Transactions, 2014, 42(4): 1152–1158
|
[14] |
Clery A, Jayne S, Benderska N, Dominguez C, Stamm S, Allain F H. Molecular basis of purine-rich RNA recognition by the human SR-like protein Tra2-β1. Nature Structural & Molecular Biology, 2011, 18(4): 443–450
|
[15] |
Tsuda K, Someya T, Kuwasako K, Takahashi M, He F, Unzai S, Inoue M, Harada T, Watanabe S, Terada T, Kobayashi N, Shirouzu M, Kigawa T, Tanaka A, Sugano S, Guntert P, Yokoyama S, Muto Y. Structural basis for the dual RNA-recognition modes of human Tra2-β RRM. Nucleic Acids Research, 2011, 39(4): 1538–1553
|
[16] |
Eldridge A G, Li Y, Sharp P A, Blencowe B J. The SRm160/300 splicing coactivator is required for exon-enhancer function. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(11): 6125–6130
|
[17] |
Dettwiler S, Aringhieri C, Cardinale S, Keller W, Barabino S M. Distinct sequence motifs within the 68-kDa subunit of cleavage factor Im mediate RNA binding, protein-protein interactions, and subcellular localization. Journal of Biological Chemistry, 2004, 279(34): 35788–35797
|
[18] |
Venables J P, Elliott D J, Makarova O V, Makarov E M, Cooke H J, Eperon I C. RBMY, a probable human spermatogenesis factor, and other hnRNP G proteins interact with Tra2β and affect splicing. Human Molecular Genetics, 2000, 9(5): 685–694
|
[19] |
Hofmann Y, Lorson C L, Stamm S, Androphy E J, Wirth B. Htra2-β1 stimulates an exonic splicing enhancer and can restore full-length SMN expression to survival motor neuron 2 (SMN2). Proceedings of the National Academy of Sciences of the United States of America, 2000, 97(17): 9618–9623
|
[20] |
Sakashita E, Tatsumi S, Werner D, Endo H, Mayeda A. Human RNPS1 and its associated factors: A versatile alternative pre-mRNA splicing regulator in vivo. Molecular and Cellular Biology, 2004, 24(3): 1174–1187
|
[21] |
Shin C, Feng Y, Manley J L. Dephosphorylated SRp38 acts as a splicing repressor in response to heat shock. Nature, 2004, 427(6974): 553–558
|
[22] |
Mende Y, Jakubik M, Riessland M, Schoenen F, Rossbach K, Kleinridders A, Kohler C, Buch T, Wirth B. Deficiency of the splicing factor Sfrs10 results in early embryonic lethality in mice and has no impact on full-length SMN/Smn splicing. Human Molecular Genetics, 2010, 19(11): 2154–2167
|
[23] |
Elliott D J, Best A, Dalgliesh C, Ehrmann I, Grellscheid S. How does Tra2β protein regulate tissue-specific RNA splicing? Biochemical Society Transactions, 2012, 40(4): 784–788
|
[24] |
Grellscheid S, Dalgliesh C, Storbeck M, Best A, Liu Y, Jakubik M, Mende Y, Ehrmann I, Curk T, Rossbach K, Bourgeois C F, Stevenin J, Grellscheid D, Jackson M S, Wirth B, Elliott D J. Identification of evolutionarily conserved exons as regulated targets for the splicing activator tra2β in development. PLoS Genetics, 2011, 7(12): e1002390
|
[25] |
Raponi M, Smith L D, Silipo M, Stuani C, Buratti E, Baralle D. BRCA1 exon 11 a model of long exon splicing regulation. RNA Biology, 2014, 11(4): 351–359
|
[26] |
Konig J, Zarnack K, Rot G, Curk T, Kayikci M, Zupan B, Turner D J, Luscombe N M, Ule J. iCLIP—transcriptome-wide mapping of protein-RNA interactions with individual nucleotide resolution. Journal of Visualized Experiments, 2011, 50: 2638
|
[27] |
Best A, James K, Dalgliesh C, Hong E, Kheirolahi-Kouhestani M, Curk T, Xu Y, Danilenko M, Hussain R, Keavney B, Wipat A, Klinck R, Cowell I G, Cheong Lee K, Austin C A, Venables J P, Chabot B, Santibanez Koref M, Tyson-Capper A, Elliott D J. Human Tra2 proteins jointly control a CHEK1 splicing switch among alternative and constitutive target exons. Nature Communications, 2014, 5: 4760
|
[28] |
Dreszer T R, Karolchik D, Zweig A S, Hinrichs A S, Raney B J, Kuhn R M, Meyer L R, Wong M, Sloan C A, Rosenbloom K R, Roe G, Rhead B, Pohl A, Malladi V S, Li C H, Learned K, Kirkup V, Hsu F, Harte R A, Guruvadoo L, Goldman M, Giardine B M, Fujita P A, Diekhans M, Cline M S, Clawson H, Barber G P, Haussler D, James Kent W. The UCSC Genome Browser database: Extensions and updates 2011. Nucleic Acids Research, 2012, 40: 918–923
|
[29] |
Stoilov P, Daoud R, Nayler O, Stamm S. Human tra2-β1 autoregulates its protein concentration by influencing alternative splicing of its pre-mRNA. Human Molecular Genetics, 2004, 13(5): 509–524
|
[30] |
Hoglund A, Nilsson L M, Muralidharan S V, Hasvold L A, Merta P, Rudelius M, Nikolova V, Keller U, Nilsson J A. Therapeutic implications for the induced levels of Chk1 in Myc-expressing cancer cells. Clinical Cancer Research, 2011, 17(22): 7067–7079
|
[31] |
Lopez-Contreras A J, Gutierrez-Martinez P, Specks J, Rodrigo-Perez S, Fernandez-Capetillo O. An extra allele of Chk1 limits oncogene-induced replicative stress and promotes transformation. Journal of Experimental Medicine, 2012, 209(3): 455–461
|
[32] |
Hanahan D, Weinberg R A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5): 646–674
|
[33] |
Hanahan D, Weinberg R A. The hallmarks of cancer. Cell, 2000, 100(1): 57–70
|
[34] |
Campaner S, Amati B. Two sides of the Myc-induced DNA damage response: From tumor suppression to tumor maintenance. Cell Division, 2012, 7(1): 6
|
[35] |
Murga M, Campaner S, Lopez-Contreras A J, Toledo L I, Soria R, Montana M F, D'Artista L, Schleker T, Guerra C, Garcia E, Barbacid M, Hidalgo M, Amati B, Fernandez-Capetillo O. Exploiting oncogene-induced replicative stress for the selective killing of Myc-driven tumors. Nature Structural & Molecular Biology, 2011, 18(12): 1331–1335
|
[36] |
Halazonetis T D, Gorgoulis V G, Bartek J. An oncogene-induced DNA damage model for cancer development. Science, 2008, 319(5868): 1352–1355
|
[37] |
Bartek J, Mistrik M, Bartkova J. Thresholds of replication stress signaling in cancer development and treatment. Nature Structural & Molecular Biology, 2012, 19(1): 5–7
|
[38] |
McNeely S, Beckmann R, Bence Lin A K. CHEK again: Revisiting the development of CHK1 inhibitors for cancer therapy. Pharmacology & Therapeutics, 2014, 142(1): 1–10
|
[39] |
Chen T, Stephens P A, Middleton F K, Curtin N J. Targeting the S and G2 checkpoint to treat cancer. Drug Discovery Today, 2012, 17(5-6): 194–202
|
[40] |
Pabla N, Bhatt K, Dong Z. Checkpoint kinase 1 (Chk1)-short is a splice variant and endogenous inhibitor of Chk1 that regulates cell cycle and DNA damage checkpoints. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(1): 197–202
|
[41] |
Chen C R, Kang Y, Massague J. Defective repression of c-myc in breast cancer cells: A loss at the core of the transforming growth factor beta growth arrest program. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(3): 992–999
|
[42] |
Fogarty P, Kalpin R F, Sullivan W. The Drosophila maternal-effect mutation grapes causes a metaphase arrest at nuclear cycle 13. Development, 1994, 120(8): 2131–2142
|
[43] |
Cao W M, Murao K, Imachi H, Yu X, Abe H, Yamauchi A, Niimi M, Miyauchi A, Wong N C, Ishida T. A mutant high-density lipoprotein receptor inhibits proliferation of human breast cancer cells. Cancer Research, 2004, 64(4): 1515–1521
|
[44] |
Woo H H, Yi X, Lamb T, Menzl I, Baker T, Shapiro D J, Chambers S K. Posttranscriptional suppression of proto-oncogene c-fms expression by vigilin in breast cancer. Molecular and Cellular Biology, 2011, 31(1): 215–225
|
[45] |
Cervigne N K, Machado J, Goswami R S, Sadikovic B, Bradley G, Perez-Ordonez B, Galloni N N, Gilbert R, Gullane P, Irish J C, Jurisica I, Reis P P, Kamel-Reid S. Recurrent genomic alterations in sequential progressive leukoplakia and oral cancer: Drivers of oral tumorigenesis? Human Molecular Genetics, 2014, 23(10): 2618–2628
|
[46] |
Parrish J K, Sechler M, Winn R A, Jedlicka P. The histone demethylase KDM3A is a microRNA-22-regulated tumor promoter in Ewing Sarcoma. Oncogene, 2013, 34(2): 257–262
|
[47] |
Hou J, Wu J, Dombkowski A, Zhang K, Holowatyj A, Boerner J L, Yang Z Q. Genomic amplification and a role in drug-resistance for the KDM5A histone demethylase in breast cancer. American Journal of Translational Research, 2012, 4(3): 247–256
|
[48] |
Qin L, Wu Y L, Toneff M J, Li D, Liao L, Gao X, Bane F T, Tien J C, Xu Y, Feng Z, Yang Z, Theissen S M, Li Y, Young L, Xu J. NCOA1 Directly Targets M-CSF1 Expression to Promote Breast Cancer Metastasis. Cancer Research, 2014, 74(13): 3477–3488
|
[49] |
Huether R, Dong L, Chen X, Wu G, Parker M, Wei L, Ma J, Edmonson M N, Hedlund E K, Rusch M C, Shurtleff S A, Mulder H L, Boggs K, Vadordaria B, Cheng J, Yergeau D, Song G, Becksfort J, Lemmon G, Weber C, Cai Z, Dang J, Walsh M, Gedman A L, Faber Z, Easton J, Gruber T, Kriwacki R W, Partridge J F, Ding L, Wilson R K, Mardis E R, Mullighan C G, Gilbertson R J, Baker S J, Zambetti G, Ellison D W, Zhang J, Downing J R. The landscape of somatic mutations in epigenetic regulators across 1,000 paediatric cancer genomes. Nature Communications, 2014, 5: 3630
|
[50] |
Bidkhori G, Narimani Z, Hosseini Ashtiani S, Moeini A, Nowzari-Dalini A, Masoudi-Nejad A. Reconstruction of an integrated genome-scale co-expression network reveals key modules involved in lung adenocarcinoma. PLoS One, 2013, 8(7): e67552
|
[51] |
Zhou B, Yuan T, Liu M, Liu H, Xie J, Shen Y, Chen P. Overexpression of the structural maintenance of chromosome 4 protein is associated with tumor de-differentiation, advanced stage and vascular invasion of primary liver cancer. Oncology Reports, 2012, 28(4): 1263–1268
|
[52] |
Wu C H, Sahoo D, Arvanitis C, Bradon N, Dill D L, Felsher D W. Combined analysis of murine and human microarrays and ChIP analysis reveals genes associated with the ability of MYC to maintain tumorigenesis. PLoS Genetics, 2008, 4(6): e1000090
|
[53] |
Zhong J, Cao R X, Liu J H, Liu Y B, Wang J, Liu L P, Chen Y J, Yang J, Zhang Q H, Wu Y, Ding W J, Hong T, Xiao X H, Zu X Y, Wen G B. Nuclear loss of protein arginine N-methyltransferase 2 in breast carcinoma is associated with tumor grade and overexpression of cyclin D1 protein. Oncogene, 2013, 33(48): 5546–5558
|
[54] |
Piao L, Kang D, Suzuki T, Masuda A, Dohmae N, Nakamura Y, Hamamoto R. The Histone Methyltransferase SMYD2 Methylates PARP1 and Promotes Poly(ADP-ribosyl)ation Activity in Cancer Cells. Neoplasia, 2014, 16(3): 257–264
|
[55] |
Zhang X, Tanaka K, Yan J, Li J, Peng D, Jiang Y, Yang Z, Barton M C, Wen H, Shi X. Regulation of estrogen receptor alpha by histone methyltransferase SMYD2-mediated protein methylation. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(43): 17284–17289
|
[56] |
Sakamoto L H, Andrade R V, Felipe M S, Motoyama A B, Pittella Silva F. SMYD2 is highly expressed in pediatric acute lymphoblastic leukemia and constitutes a bad prognostic factor. Leukemia Research, 2014, 38(4): 496–502
|
[57] |
Huang A, Ho C S, Ponzielli R, Barsyte-Lovejoy D, Bouffet E, Picard D, Hawkins C E, Penn L Z. Identification of a novel c-Myc protein interactor, JPO2, with transforming activity in medulloblastoma cells. Cancer Research, 2005, 65(13): 5607–5619
|
[58] |
Singel S M, Cornelius C, Zaganjor E, Batten K, Sarode V R, Buckley D L, Peng Y, John G B, Li H C, Sadeghi N, Wright W E, Lum L, Corson T W, Shay J W. KIF14 Promotes AKT Phosphorylation and Contributes to Chemoresistance in Triple-Negative Breast Cancer. Neoplasia, 2014, 16(3): 247–256
|
[59] |
Singel S M, Cornelius C, Batten K, Fasciani G, Wright W E, Lum L, Shay J W. A targeted RNAi screen of the breast cancer genome identifies KIF14 and TLN1 as genes that modulate docetaxel chemosensitivity in triple-negative breast cancer. Clinical Cancer Research, 2013, 19(8): 2061–2070
|
[60] |
Mitra S, Mazumder Indra D, Basu P S, Mondal R K, Roy A, Roychoudhury S, Panda C K. Amplification of CyclinL1 in uterine cervical carcinoma has prognostic implications. Molecular Carcinogenesis, 2010, 49(11): 935–943
|
[61] |
Peng L, Yanjiao M, Ai-guo W, Pengtao G, Jianhua L, Ju Y, Hongsheng O, Xichen Z. A fine balance between CCNL1 and TIMP1 contributes to the development of breast cancer cells. Biochemical and Biophysical Research Communications, 2011, 409(2): 344–349
|
[62] |
Tanaka T, Nakatani T, Kamitani T. Inhibition of NEDD8-conjugation pathway by novel molecules: Potential approaches to anticancer therapy. Molecular Oncology, 2012, 6(3): 267–275
|
[63] |
PC O L. Penny S A, Dolan R T, Kelly C M, Madden S F, Rexhepaj E, Brennan D J, McCann A H, Ponten, F, Uhlen, M, Zagozdzon, R, Duffy, M J, Kell, M R, Jirstrom, K, Gallagher, W M. Systematic antibody generation and validation via tissue microarray technology leading to identification of a novel protein prognostic panel in breast cancer. BMC Cancer, 2013, 13: 175
|
[64] |
Mendes-Pereira A M, Sims D, Dexter T, Fenwick K, Assiotis I, Kozarewa I, Mitsopoulos C, Hakas J, Zvelebil M, Lord C J, Ashworth A. Genome-wide functional screen identifies a compendium of genes affecting sensitivity to tamoxifen. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(8): 2730–2735
|
[65] |
Rao M, Song W, Jiang A, Shyr Y, Lev S, Greenstein D, Brantley-Sieders D, Chen J. VAMP-associated protein B (VAPB) promotes breast tumor growth by modulation of Akt activity. PLoS One, 2012, 7(10): e46281
|
[66] |
Davis L M, Harris C, Tang L, Doherty P, Hraber P, Sakai Y, Bocklage T, Doeden K, Hall B, Alsobrook J, Rabinowitz I, Williams T M, Hozier J. Amplification patterns of three genomic regions predict distant recurrence in breast carcinoma. Journal of Molecular Diagnostics, 2007, 9(3): 327–336
|
[67] |
Lei Y, Henderson B R, Emmanuel C, Harnett P R, Defazio A. Inhibition of ANKRD1 sensitizes human ovarian cancer cells to endoplasmic reticulum stress-induced apoptosis. Oncogene, 2014, 34(4): 485–495
|
[68] |
Trendel J A, Ellis N, Sarver J G, Klis W A, Dhananjeyan M, Bykowski C A, Reese M D, Erhardt P W. Catalytically active peptidylglycine alpha-amidating monooxygenase in the media of androgen-independent prostate cancer cell lines. Journal of Biomolecular Screening, 2008, 13(8): 804–809
|
[69] |
Lee G, Blenis J. Akt-ivation of RNA splicing. Molecular Cell, 2014, 53(4): 519–520
|
[70] |
Fu X, Meng Z, Liang W, Tian Y, Wang X, Han W, Lou G, Lou F, Yen Y, Yu H, Jove R, Huang W. miR-26a enhances miRNA biogenesis by targeting Lin28B and Zcchc11 to suppress tumor growth and metastasis. Oncogene, 2013, 33(34): 4296–4306
|
[71] |
Piskounova E, Polytarchou C, Thornton J E, LaPierre R J, Pothoulakis C, Hagan J P, Iliopoulos D, Gregory R I. Lin28A and Lin28B inhibit let-7 microRNA biogenesis by distinct mechanisms. Cell, 2011, 147(5): 1066–1079
|
[72] |
Schmidt M J, West S, Norbury C J. The human cytoplasmic RNA terminal U-transferase ZCCHC11 targets histone mRNAs for degradation. RNA, 2011, 17(1): 39–44
|
[73] |
Albiges L, Goubar A, Scott V, Vicier C, Lefebvre C, Alsafadi S, Commo F, Saghatchian M, Lazar V, Dessen P, Delaloge S, Andre F, Quidville V. Chk1 as a new therapeutic target in triple-negative breast cancer. Breast, 2014, 23(3): 250–258
|
[74] |
Ma C X, Cai S, Li S, Ryan C E, Guo Z, Schaiff W T, Lin L, Hoog J, Goiffon R J, Prat A, Aft R L, Ellis M J, Piwnica-Worms H. Targeting Chk1 in p53-deficient triple-negative breast cancer is therapeutically beneficial in human-in-mouse tumor models. Journal of Clinical Investigation, 2012, 122(4): 1541–1552
|
[75] |
Zhang Y, Hunter T. Roles of Chk1 in cell biology and cancer therapy. International Journal of Cancer, 2014, 134(5): 1013–1023
|
[76] |
Anderson E S, Lin C H, Xiao X, Stoilov P, Burge C B, Black D L. The cardiotonic steroid digitoxin regulates alternative splicing through depletion of the splicing factors SRSF3 and TRA2B. RNA, 2012, 18(5): 1041–1049
|
[77] |
Novoyatleva T, Heinrich B, Tang Y, Benderska N, Butchbach M E, Lorson C L, Lorson M A, Ben-Dov C, Fehlbaum P, Bracco L, Burghes A H, Bollen M, Stamm S. Protein phosphatase 1 binds to the RNA recognition motif of several splicing factors and regulates alternative pre-mRNA processing. Human Molecular Genetics, 2008, 17(1): 52–70
|
[78] |
Katzenberger R J, Marengo M S, Wassarman D A. Control of alternative splicing by signal-dependent degradation of splicing-regulatory proteins. Journal of Biological Chemistry, 2009, 284(16): 10737–10746
|
[79] |
Bechara E G, Sebestyen E, Bernardis I, Eyras E, Valcarcel J. RBM5, 6, and 10 differentially regulate NUMB alternative splicing to control cancer cell proliferation. Molecular Cell, 2013, 52(5): 720–733
|
[80] |
Nam E A, Cortez D. ATR signalling: more than meeting at the fork. Biochemical Journal, 2011, 436(3): 527–536
|
/
〈 | 〉 |