Use of dry yeast cells as a cheap nitrogen source for lactic acid production by thermophilic Bacillus coagulans WCP10-4Ž 

Kim Yng Ooi , Jin Chuan Wu

Front. Chem. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (3) : 381 -385.

PDF (205KB)
Front. Chem. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (3) : 381 -385. DOI: 10.1007/s11705-015-1534-2
RESEARCH ARTICLE
RESEARCH ARTICLE

Use of dry yeast cells as a cheap nitrogen source for lactic acid production by thermophilic Bacillus coagulans WCP10-4Ž 

Author information +
History +
PDF (205KB)

Abstract

Dry yeast cells (DYC) were used as a cheap nitrogen source to replace expensive yeast extract (YE) for L-lactic acid production by thermophilic Bacillus coagulans. Cassava starch (200 g·L−1) was converted to L-lactic acid by simultaneous saccharification and fermentation using Bacillus coagulans WCP10-4 at 50 °C in the presence of 20 g·L−1 of DYC, giving 148.1 g·L−1 of L-lactic acid at 27 h with a productivity of 5.5 g·L−1·h−1 and a yield of 92%. In contrast, 154.4 g·L−1 of lactic acid was produced at 24 h with a productivity of 6.4 g·L−1·h−1 and a yield of 96% when equal amount of YE was used under the same conditions. Use of pre-autolyzed DYC at 50 °C for overnight slightly improved the lactic acid titer (154.5 g·L−1) and productivity (7.7 g·L−1·h−1) but gave the same yield (96%).

Graphical abstract

Keywords

L-lactic acid / thermophilic strain / Bacillus coagulans / dry yeast cells / autolysis / fermentation

Cite this article

Download citation ▾
Kim Yng Ooi, Jin Chuan Wu. Use of dry yeast cells as a cheap nitrogen source for lactic acid production by thermophilic Bacillus coagulans WCP10-4Ž . Front. Chem. Sci. Eng., 2015, 9(3): 381-385 DOI:10.1007/s11705-015-1534-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ye L DHudari M S BLi ZWu J C. Simultaneous detoxification, saccharification and fermentation of acid hydrolysate of oil palm empty fruit bunch to L-lactic acid by Bacillus coagulans JI12. Biochemical Engineering Journal201483: 16–21

[2]

Ye L DZhou X DHudari M S BZhang D XLi ZWu J C. Efficient conversion of acid hydrolysate of oil palm empty fruit bunch to L-lactic acid by newly isolated Bacillus coagulans JL12. Applied Microbiology and Biotechnology201397: 4831–4838

[3]

Zhou X DYe L DWu J C. Production of L-lactic acid by newly isolated thermophilic Bacillus coagulans WCP10-4 with high glucose tolerance. Applied Microbiology and Biotechnology201397(10): 4309–4314

[4]

Ye L DZhao HLi ZWu J C. Significantly improved acid tolerance of Lactobacillus pentosus by error-prone whole genome amplification. Bioresource Technology2013135: 459–463

[5]

Ye L DZhou X DHudari M S BLi ZWu J C. Highly efficient production of L-lactic acid from xylose by newly isolated Bacillus coagulans C106. Bioresource Technology2013132: 38–44

[6]

Patel M AOu M SHarbrucker RAldrich H CBuszko M LIngram L OShanmugam K T. Isolation and characterization of acid-tolerant, thermophilic bacteria for effective fermentation of biomass-derived sugars to lactic acid. Applied and Environmental Microbiology200672: 3228–3235

[7]

Tejayadi SCheryan M. Lactic acid production from cheese whey permeate. Productivity and economics of continuous membrane bioreactor. Applied Microbiology and Biotechnology199543: 242–248

[8]

Neklyudov A DFedorova N VIlyukhina V PLisitsa E P. Enzyme profile of autolyzing yeasts of the genus Saccharomyces. Applied Biochemistry and Microbiology199329: 547–554

[9]

Kwon SLee P CLee E GChang Y KChang N. Production of lactic acid by Lactobacillus rhamnosus with vitamin-supplemented soybean hydrolysate. Enzyme and Microbial Technology200026: 209–215

[10]

Li ZDing SLi ZTan T. L-lactic acid production by Lactobacillus casei fermentation with corn steep liquor-supplemented acid-hydrolysate of soybean meal. Biotechnology Journal20061: 1453–1458

[11]

Altaf MVenkateshwar MSrijana MReddy G. An economic approach for L-(+) lactic acid fermentation by Lactobacillus amylophilus GV6 using inexpensive carbon and nitrogen sources. Journal of Applied Microbiology2007103: 372–380

[12]

Ma KMaeda TYou HShirai Y. Open fermentative production of L-lactic acid with high optical purity by thermophilic Bacillus coagulans using excess sludge as nutrient. Bioresource Technology2014151: 28–35

[13]

Hisao KTakumi SFujio KMasaki K U S. Patent, 6051212A, 2000-<month>04</month>-<day>18</day>

[14]

Ferreira I M P L V OPinho OVieira ETavarela J G. Brewer’s saccharomyces yeast biomass: Characteristics and potential applications. Trends in Food Science & Technology201021: 77–84

[15]

Deesuth OLaopaiboon PKlanrit PLaopaiboon L. Improvement of ethanol production from sweet sorghum juice under high gravity and very high gravity conditions: Effects of nutrient supplementation and aeration. Industrial Crops and Products201574: 95–102

[16]

Tanguler HErten H. The effect of different temperatures on autolysis of baker’s yeast for the production of yeast extract. Turkish Journal of Agriculture and Forestry200933, 149–154

[17]

Altaf MNaveena B JReddy G. Production of L-(+)-lactic acid from starch by L. amylophilus GV6. Food Technology and Biotechnology200543(3): 235–239

[18]

Champagne C PGaudreau HConway J. Effect of the production or use of mixtures of bakers’ or brewers’ yeast extracts on their ability to promote growth of lactobacilli and pediococciElectronic Journal of Biotechnology20036(3): 185–197

[19]

Ghosh U KGhosh M K. Utilization of wheat bran as bed material in solid state bacterial production of lactic acid with various nitrogen sources. World Academy of Science. Engineering and Technology20126: 568–571

[20]

Boonraeng SFoo-trakul PKanlayakrit WChetanachitra C. Effects of chemical, biochemical and physical treatments on the kinetics and on the role of some endogenous enzymes action of baker’s yeast lysis for food-grade yeast extract production. Kasetsart Journal: Natural Science200034: 270–278

[21]

Robbins,  US Patent, 41221961978-<month>10</month>-<day>24</day>

[22]

Peppler H J. Yeast extracts. In: Rose A H ed. Fermented Foods. London: Academic Press, 1982, 293–312

[23]

Selmer-olsen ESorhaug T. Comparative studies of the growth of Lactobacillus plantarum in whey supplemented with autolysate from brewery yeast biomass or commercial yeast extract. Journal of Milchwissenschaft199853(7): 367–370

[24]

Mili T VRakin MIler-Marinkovi S. Utilization of baker’s yeast (Saccharomyces cerevisiae) for the production of yeast extract: Effects of different enzymatic treatments on solid, protein and carbohydrate recovery. Journal of the Serbian Chemical Society200772: 451–457

[25]

Juturu VWu J C. Microbial production of lactic acid: The latest development. Critical Reviews in Biotechnology,

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (205KB)

2541

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/