Size-controlled green synthesis of silver nanoparticles assisted by L-cysteine

Wenchao Zhang, Lin Zhang, Yan Sun

PDF(1366 KB)
PDF(1366 KB)
Front. Chem. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (4) : 494-500. DOI: 10.1007/s11705-015-1527-1
RESEARCH ARTICLE

Size-controlled green synthesis of silver nanoparticles assisted by L-cysteine

Author information +
History +

Abstract

A green and size-controlled synthesis of silver nanoparticles (Ag NPs) in aqueous solution with the assistance of L-cysteine is presented. The size of Ag NPs decreases with the increase of L-cysteine concentration, and thus can be controlled by adjusting L-cysteine concentration. TEM analysis shows that Ag NPs with an average size of 3 nm can be produced in the presence of 1.0 mmol/L L-cysteine, about one sixth of the size of Ag NPs obtained in the absence of L-cysteine (17 nm). The as-synthesized silver colloidal solution is stable and can be stored at room temperature for at least two months without any precipitation. This L-cysteine assisted method is simple, feasible and efficient, and would facilitate the production and application of Ag NPs.

Graphical abstract

Keywords

nanoparticles / silver / L-cysteine / size distribution / synthesis

Cite this article

Download citation ▾
Wenchao Zhang, Lin Zhang, Yan Sun. Size-controlled green synthesis of silver nanoparticles assisted by L-cysteine. Front. Chem. Sci. Eng., 2015, 9(4): 494‒500 https://doi.org/10.1007/s11705-015-1527-1

References

[1]
Lai G S, Wang L L, Wu J, Ju H X, Yan F. Electrochemical stripping analysis of nanogold label-induced silver deposition for ultrasensitive multiplexed detection of tumor markers. Analytica Chimica Acta, 2012, 721: 1–6
[2]
Lin Y, Chen C, Wang C, Pu F, Ren J, Qu X. Silver nanoprobe for sensitive and selective colorimetric detection of dopamine via robust Ag-catechol interaction. Chemical Communications, 2011, 47(4): 1181–1183
[3]
Yang L, Ma L, Chen G, Liu J, Tian Z Q. Ultrasensitive SERS detection of TNT by imprinting molecular recognition using a new type of stable substrate. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(42): 12683–12693
[4]
Liu P, Zhao M. Silver nanoparticle supported on halloysite nanotubes catalyzed reduction of 4-nitrophenol (4-NP). Applied Surface Science, 2009, 255(7): 3989–3993
[5]
Yu D, Yam V W W. Controlled synthesis of monodisperse silver nanocubes in water. Journal of the American Chemical Society, 2004, 126(41): 13200–13201
[6]
Lan H, Han J, Chen H, Zhao X. Ag/PMMA hollow waveguide for solar energy transmission. Frontiers of Chemical Science and Engineering, 2011, 5(3): 303–307
[7]
Wiley B, Sun Y, Xia Y. Synthesis of silver nanostructures with controlled shapes and properties. Accounts of Chemical Research, 2007, 40(10): 1067–1076
[8]
Kida S, Ichiji M, Watanabe J, Hirasawa I. Particle size distribution and shape control of Au nanoparticles used for particle gun. Frontiers of Chemical Science and Engineering, 2013, 7(1): 60–64
[9]
Brust M, Walker M, Bethell D, Schiffrin D J, Whyman R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. Chemical Communications, 1994, (7): 801–802
[10]
Sun S, Murray C, Weller D, Folks L, Moser A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science, 2000, 287(5460): 1989–1992
[11]
Wu N, Fu L, Su M, Aslam M, Wong K C, Dravid V P. Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Letters, 2004, 4(2): 383–386
[12]
Harra J, Mäkitalo J, Siikanen R, Virkki M, Genty G, Kobayashi T, Kauranen M, Mäkelä J M. Size-controlled aerosol synthesis of silver nanoparticles for plasmonic materials. Journal of Nanoparticle Research, 2012, 14(6): 1–10
[13]
Pfeiffer T, Ortiz-Gonzalez J, Santbergen R, Tan H, Ott A S, Zeman M, Smets A. Plasmonic nanoparticle films for solar cell applications fabricated by size-selective aerosol deposition. Energy Procedia, 2014, 60: 3–12
[14]
Jung K, Song H J, Lee G, Ko Y, Ahn K, Choi H, Kim J Y, Ha K, Song J, Lee J K, Lee C, Choi M. Plasmonic organic solar cells employing nanobump assembly via aerosol-derived nanoparticles. ACS Nano, 2014, 8(3): 2590–2601
[15]
Wang L, Li H, Tian J, Sun X. Monodisperse, micrometer-scale, highly crystalline, nanotextured Ag dendrites: Rapid, large-scale, wet-chemical synthesis and their application as SERS substrates. ACS Applied Materials & Interfaces, 2010, 2(11): 2987–2991
[16]
Mishra Y, Mohapatra S, Kabiraj D, Mohanta B, Lalla N, Pivin J, Avasthi D. Synthesis and characterization of Ag nanoparticles in silica matrix by atom beam sputtering. Scripta Materialia, 2007, 56(7): 629–632
[17]
Ge J, Lei J, Zare R N. Protein-inorganic hybrid nanoflowers. Nature Nanotechnology, 2012, 7(7): 428–432
[18]
Kang L, Xu P, Chen D, Zhang B, Du Y, Han X, Li Q, Wang H L. Amino acid-assisted synthesis of hierarchical silver microspheres for single particle surface-enhanced Raman spectroscopy. Journal of Physical Chemistry C, 2013, 117(19): 10007–10012
[19]
Wei H, Wang Z, Zhang J, House S, Gao Y G, Yang L M, Robinson H, Tan L H, Xing H, Hou C J, Robertson I M, Zuo J M, Lu Y. Time-dependent, protein-directed growth of gold nanoparticles within a single crystal of lysozyme. Nature Nanotechnology, 2011, 6(2):  93–97
[20]
Zhao S, Yao J, Fei X, Shao Z, Chen X. An antimicrobial film by embedding in situ synthesized silver nanoparticles in soy protein isolate. Materials Letters, 2013, 95: 142–144
[21]
Guli M, Lambert E M, Li M, Mann S. Template-directed synthesis of nanoplasmonic arrays by intracrystalline metalization of cross-linked lysozyme crystals. Angewandte Chemie International Edition, 2010, 49(3): 520–523
[22]
Pandey S, Goswami G K, Nanda K K. Green synthesis of biopolymer-silver nanoparticle nanocomposite: An optical sensor for ammonia detection. International Journal of Biological Macromolecules, 2012, 51(4): 583–589
[23]
Saini R K, Srivastava A K, Gupta P K, Das K. pH dependent reversible aggregation of Chitosan and glycol-Chitosan stabilized silver nanoparticles. Chemical Physics Letters, 2011, 511(4-6): 326–330
[24]
Hung Y C, Hsu W T, Lin T Y, Fruk L. Photoinduced write-once read-many-times memory device based on DNA biopolymer nanocomposite. Applied Physics Letters, 2011, 99(25): 253301
[25]
Guo C, Irudayaraj J. Fluorescent Ag clusters via a protein-directed approach as a Hg(II) ion sensor. Analytical Chemistry, 2011, 83(8): 2883–2889
[26]
Slocik J M, Wright D W. Biomimetic mineralization of noble metal nanoclusters. Biomacromolecules, 2003, 4(5): 1135–1141
[27]
Zaheer Z, Malik M A, Al-Nowaiser F M, Khan Z. Preparation of silver nanoparticles using tryptophan and its formation mechanism. Colloids and Surfaces. B, Biointerfaces, 2010, 81(2): 587–592
[28]
Liu Z, Xing Z, Zu Y, Tan S, Zhao L, Zhou Z, Sun T. Synthesis and characterization of L-histidine capped silver nanoparticles. Materials Science and Engineering C, 2012, 32(4): 811–816
[29]
Tengvall P, Lestelius M, Liedberg B, Lundström I. Plasma protein and antisera interactions with L-cysteine and 3-mercaptopropionic acid monolayers on gold surfaces. Langmuir, 1992, 8(5): 1236–1238
[30]
Jiang C, Guan Z, Lim S Y, Polavarapu L, Xu Q H. Two-photon ratiometric sensing of Hg2+ by using cysteine functionalized Ag nanoparticles. Nanoscale, 2011, 3(8): 3316–3320
[31]
Perni S, Hakala V, Prokopovich P. Biogenic synthesis of antimicrobial silver nanoparticles capped with L-cysteine. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2014, 460: 219–224
[32]
Underwood S, Mulvaney P. Effect of the solution refractive index on the color of gold colloids. Langmuir, 1994, 10(10): 3427–3430
[33]
Pakhomov P M, Abramchuk S S, Khizhnyak S D, Ovchinnikov M M, Spiridonova V M. Formation of nanostructured hydrogels in  <?A3B2 th=7pt?>L<?A3B2 th?>-cysteine and silver nitrate solutions. Nanotechnologies in Russia, 2010, 5(3-4): 209–213
[34]
Babic M, Horák D, Jendelová P, Glogarová K I, Herynek V T, Trchová M, Likavčanová K N, Lesný P, Pollert E, Hájek M, Syková E. Poly(N,N-dimethylacrylamide)-coated maghemite nanoparticles for stem cell labeling. Bioconjugate Chemistry, 2009, 20(2): 283–294
[35]
Mocanu A, Cernica I, Tomoaia G, Bobos L D, Horovitz O, Tomoaia-Cotisel M. Self-assembly characteristics of gold nanoparticles in the presence of cysteine. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2009, 338(1-3): 93–101
[36]
Nidhin M, Indumathy R, Sreeram K, Nair B U. Synthesis of iron oxide nanoparticles of narrow size distribution on polysaccharide templates. Bulletin of Materials Science, 2008, 31(1): 93–96
[37]
Honary S, Barabadi H, Gharaei-Fathabad E, Naghibi F. Green synthesis of silver nanoparticles induced by the fungus Penicillium citrinum. Tropical Journal of Pharmaceutical Research, 2013, 12(1): 7–11
[38]
Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science, 2002, 298(5601): 2176–2179
[39]
Kim Y H, Lee D K, Kang Y S. Synthesis and characterization of Ag and Ag–SiO2 nanoparticles. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2005, 257-258: 273–276
[40]
Li H, Bian Y. Selective colorimetric sensing of histidine in aqueous solutions using cysteine modified silver nanoparticles in the presence of Hg2+. Nanotechnology, 2009, 20(14): 145502

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 21236005), the Natural Science Foundation of Tianjin (No. 13JCZDJC31100), China Scholarship Council (CSC), and the Innovation Foundation of Tianjin University.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1366 KB)

Accesses

Citations

Detail

Sections
Recommended

/