High production of butyric acid by Clostridium tyrobutyricum mutantŽ 

Chao Ma , Jianfa Ou , Matthew Miller , Sarah McFann , Xiaoguang (Margaret) Liu

Front. Chem. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (3) : 369 -375.

PDF (713KB)
Front. Chem. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (3) : 369 -375. DOI: 10.1007/s11705-015-1525-3
RESEARCH ARTICLE
RESEARCH ARTICLE

High production of butyric acid by Clostridium tyrobutyricum mutantŽ 

Author information +
History +
PDF (713KB)

Abstract

The objective of this study was to improve the production of butyric acid by process optimization using the metabolically engineered mutant of Clostridium tyrobutyricum (PAK-Em). First, the free-cell fermentation at pH 6.0 produced butyric acid with concentration of 38.44 g/L and yield of 0.42 g/g. Second, the immobilized-cell fermentations using fibrous-bed bioreactor (FBB) were run at pHs of 5.0, 5.5, 6.0, 6.5 and 7.0 to optimize fermentation process and improve the butyric acid production. It was found that the highest titer of butyric acid, 63.02 g/L, was achieved at pH 6.5. Finally, the metabolic flux balance analysis was performed to investigate the carbon rebalance in C. tyrobutyricum. The results show both gene manipulation and fermentation pH change redistribute carbon between biomass, acetic acid and butyric acid. This study demonstrated that high butyric acid production could be obtained by integrating metabolic engineering and fermentation process optimization.

Graphical abstract

Keywords

Clostridium tyrobutyricum / butyric acid production / fermentation / mutant / pH / flux balance analysis

Cite this article

Download citation ▾
Chao Ma, Jianfa Ou, Matthew Miller, Sarah McFann, Xiaoguang (Margaret) Liu. High production of butyric acid by Clostridium tyrobutyricum mutantŽ . Front. Chem. Sci. Eng., 2015, 9(3): 369-375 DOI:10.1007/s11705-015-1525-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wei DLiu XYang S T. Butyric acid production from sugarcane bagasse hydrolysate by Clostridium tyrobutyricum immobilized in a fibrous-bed bioreactor. Bioresource Technology2013129: 553–560

[2]

Dwidar MPark J YMitchell R JSang B I. The future of butyric acid in industry. The Scientific World Journal2012, 471417

[3]

Atweh  G  F DeSimone  J Saunthararajah  Y Fathallah  HWeinberg R SNagel R LFabry M EAdams R J. Hemoglobinopathies. American Society of Hematology Education Program2003: 14–39

[4]

Canani R BCostanzo M DLeone LPedata MMeli RCalignano A. Potential beneficial effects of butyrate in intestinal and extraintestinal diseases. World Journal of Gastroenterology201117(12): 1519–1528

[5]

Lazarova D LChiaro CBordonaro M. Butyrate induced changes in Wnt-signaling specific gene expression in colorectal cancer cells. BMC Research Notes20147(1): 226

[6]

Huang JCai JWang JZhu XHuang LYang S TXua Z. Efficient production of butyric acid from Jerusalem artichoke by immobilized Clostridium tyrobutyricum in a fibrous-bed bioreactor. Bioresource Technology2011102(4): 3923–3926

[7]

Kong QHe G QChen FRuan H. Studies on a kinetic model for butyric acid bioproduction by Clostridium butyricumLetters in Applied Microbiology200643(1): 71–77

[8]

Zhang CYang HYang FMa Y. Current progress on butyric acid production by fermentation. Current Microbiology200959(6): 656–663

[9]

Canganella FWiegel J. Continuous cultivation of Clostridium thermobutyricum in a rotary fermentor system. Journal of Industrial Microbiology & Biotechnology200024(1): 7–13

[10]

Ma CKojima KXu NMobley JZhou LYang S TLiu X M. Comparative proteomics analysis of high n-butanol producing metabolically engineered Clostridium tyrobutyricumJournal of Biotechnology2015193: 108–119

[11]

Patel G BAgnew B J. Growth and butyric acid production by Clostridium populetiArchives of Microbiology1988150(3): 267–271

[12]

He G QKong QChen Q HRuan H. Batch and fed-batch production of butyric acid by Clostridium butyricum ZJUCB. Journal of Zhejiang University20056(11): 1076–1080

[13]

Cascone R. Biobutanol—A replacement for bioethanol. Chemical Engineering Progress2008104(8): 4–9

[14]

Alam SStevens DBajpai R. Production of butyric acid by batch fermentation of cheese whey with Clostridium beijerinckiiJournal of Industrial Microbiology19882(6): 359–364

[15]

Canganella FKuk S UMorgan HWiegel JClostridium thermobutyricum: Growth studies and stimulation of butyrate formation by acetate supplementation. Microbiological Research2002157(2): 149–156

[16]

Jo J HLee D SPark J M. The effects of pH on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1. Bioresource Technology200899(17): 8485–8491

[17]

Huang Y LWu ZZhang LCheung C MYang S T. Production of carboxylic acids from hydrolyzed corn meal by immobilized cell fermentation in a fibrous-bed bioreactor. Bioresource Technology200282(1): 51–59

[18]

Michel-Savin DMarchal RVandecasteele J P. Butyric fermentation: Metabolic behavior and production performance of Clostridium tyrobutyricum in a continuous culture with cell recycle. Applied Microbiology and Biotechnology199034(2): 172–177

[19]

Liu XYang S T. Kinetics of butyric acid fermentation of glucose and xylose by Clostridium tyrobutyricum wild type and mutant. Process Biochemistry200641(4): 801–808

[20]

Jiang LWang JLiang SCai JXu ZCen PYang S TLi S. Enhanced butyric acid tolerance and bioproduction by Clostridium tyrobutyricum immobilized in a fibrous bed bioreactor. Biotechnology and Bioengineering2009108(1): 31–40

[21]

Saini MWang Z WChiang C JChao Y P. Metabolic engineering of Escherichia coli for production of butyric acid. Journal of Agricultural and Food Chemistry201462(19): 4342–4348

[22]

Liu XZhu YYang S. Butyric acid and hydrogen production by Clostridium tyrobutyricum ATCC 25755 and mutants. Enzyme and Microbial Technology200638(3–4): 521–528

[23]

Lewis V PYang S T. Continuous propionic acid fermentation by immobilized Propionibacterium acidipropionici in a novel packed-bed bioreactor. Biotechnology and Bioengineering199240(4): 465–474

[24]

Huang YYang S T. Acetate production from whey lactose using co-immobilized cells of homolactic and homoacetic bacteria in a fibrous-bed bioreactor. Biotechnology and Bioengineering199860(4): 499–507

[25]

Silva E MYang S T. Kinetics and stability of a fibrous bed bioreactor for continuous production of lactic from unsupplemented acid whey. Journal of Biotechnology199541(1): 59–70

[26]

Liu XYang S T. Kinetics of butyric acid fermentation of glucose and xylose by Clostridium tyrobutyricum wild type and mutant. Process Biochemistry200641(4): 801–808

[27]

Yang S T. Extractive fermentation using convoluted fibrous bed bioreactor. US Patent, 55630691996-<month>10</month>-<day>08</day>

[28]

Zhu Y. Enhanced butyric acid fermentation by Clostridium tyrobutyricum immobilized in a fibrous-bed bioreactor. Dissertation for the Doctoral Degree. Columbus: The Ohio State University, USA, 2003, 99–100

[29]

Zhu YYang S T. Effect of pH on metabolic pathway shift in fermentation of xylose by Clostridium tyrobutyricumJournal of Biotechnology2004110(2): 143–157

[30]

Zhu YLiu XYang S T. Construction and characterization of pta gene deleted mutant of Clostridium tyrobutyricm for enhanced butyric acid fermentation. Biotechnology and Bioengineering200590(2): 154–166

[31]

Du YJiang WYu MTang IYang S T. Metabolic process engineering of Clostridium tyrobutyricum ∆ack-adhE2 for enhanced n-butanol production from glucose: Effects of methyl viologen on NADH availability, flux distribution, and fermentation kinetics. Biotechnology and Bioengineering2014112(4): 705–715

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (713KB)

2506

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/