High butanol production by regulating carbon, redox and energy in Clostridia? ?
Jianfa Ou, Chao Ma, Ningning Xu, Yinming Du, Xiaoguang (Margaret) Liu
High butanol production by regulating carbon, redox and energy in Clostridia? ?
Butanol is a promising biofuel with high energy intensity and can be used as gasoline substitute. It can be produced as a sustainable energy by microorganisms (such as Clostridia) from low-value biomass. However, the low productivity, yield and selectivity in butanol fermentation are still big challenges due to the lack of an efficient butanol-producing host strain. In this article, we systematically review the host cell engineering of Clostridia, focusing on (1) various strategies to rebalance metabolic flux to achieve a high butanol production by regulating the metabolism of carbon, redox or energy, (2) the challenges in pathway manipulation, and (3) the application of proteomics technology to understand the intracellular metabolism. In addition, the process engineering is also briefly described. The objective of this review is to summarize the previous research achievements in the metabolic engineering of Clostridium and provide guidance for future novel strain construction to effectively produce butanol.
Clostridia / butanol / biofuel / metabolism / carbon / redox / energy
[1] |
Dürre P. Fermentative butanol production. Annals of the New York Academy of Sciences, 2008, 1125(1): 353–362
|
[2] |
Caspeta L, Buijs N A A, Nielsen J. The role of biofuels in the future energy supply. Energy & Environmental Science, 2013, 6(4): 177–182
|
[3] |
Lütke-Eversloh T, Bahl H. Metabolic engineering of Clostridium acetobutylicum: Recent advances to improve butanol production. Current Opinion in Biotechnology, 2011, 22(5): 634–647
|
[4] |
Tracy B P, Jones S W, Fast A G, Indurthi D C, Papoutsakis E T. Clostridia: The importance of their exceptional substrate and metabolite diversity for biofuel and biorefinery applications. Current Opinion in Biotechnology, 2012, 23(3): 364–381
|
[5] |
Zheng Y, Li L, Xian M, Ma Y, Yang J, Xu X, He D. Problems with the microbial production of butanol. Journal of Industrial Microbiology & Biotechnology, 2009, 36(9): 1127–1138
|
[6] |
Yu M, Zhang Y, Tang I, Yang S. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production. Metabolic Engineering, 2011, 13(4): 373–382
|
[7] |
Harris L M, Desai R P, Welker N E, Papoutsakis E T. Characterization of recombinant strains of the Clostridium acetobutylicum butyrate kinase inactivation mutant: need for new phenomenological models for solventogenesis and butanol inhibition? Biotechnology and Bioengineering, 2000, 67(1): 1–11
|
[8] |
Jang Y S, Lee J Y, Lee J, Park J H, Im J A, Eom M H, Lee J, Lee S H, Song H, Cho J H, Seung D Y, Lee S Y. Enhanced butanol production obtained by reinforcing the direct butanol-forming route in Clostridium acetobutylicum. mBio, 2012, 3(5): 1–9
|
[9] |
Cooksley C M, Zhang Y, Wang H, Redl S, Winzer K, Minton N P. Targeted mutagenesis of the Clostridium acetobutylicum acetone-butanol-ethanol fermentation pathway. Metabolic Engineering, 2012, 14(6): 630–641
|
[10] |
Cai G, Jin B, Saint C, Monis P. Genetic manipulation of butyrate formation pathways in Clostridium butyricum. Journal of Biotechnology, 2011, 155(3): 269–274
|
[11] |
Lu C. Butanol production from lignocellulosic feedstocks by acetone-butanol-ethanol fermentation with integrated product recovery. Dissertation for the Doctoral Degree. Columbus: The Ohio State University, 2011, 2–25
|
[12] |
Tummala S B, Welker N E, Papoutsakis E T. Design of antisense RNA constructs for downregulation of the acetone formation pathway of Clostridium acetobutylicum. Journal of Bacteriology, 2003, 185(6): 1923–1934
|
[13] |
Nair R V, Papoutsakis E T. Expression of plasmid-encoded aad in Clostridium acetobutylicum M5 restores vigorous butanol production. Journal of Bacteriology, 1994, 176(18): 5843–5846
|
[14] |
Yu L, Zhao J, Xu M, Dong J, Varghese S, Yu M, Tang I, Yang S. Metabolic engineering of Clostridium tyrobutyricum for n-butanol production: Effects of CoA transferase. Applied Microbiology and Biotechnology, 2015, published online
|
[15] |
Ma C, Kojima K, Xu N, Mobley J, Zhou L, Yang S, Liu X M. Comparative proteomics analysis of high n-butanol producing metabolically engineered Clostridium tyrobutyricum. Journal of Biotechnology, 2015, 193: 108–119
|
[16] |
Rajagopalan G, He J, Yang K. A highly efficient NADH-dependent butanol dehydrogenase from high-butanol-producing Clostridium sp. BOH3. BioEnergy Research, 2013, 6(1): 240–251
|
[17] |
Kuit W, Minton N P, López-Contreras A M, Eggink G. Disruption of the acetate kinase (ack) gene of Clostridium acetobutylicum results in delayed acetate production. Applied Microbiology and Biotechnology, 2012, 94(3): 729–741
|
[18] |
Zhang Y, Yu M, Yang S. Effects of ptb knockout on butyric acid fermentation by Clostridium tyrobutyricum. Biotechnology Progress, 2012, 28(1): 52–59
|
[19] |
Lehmann D, Radomski N, Lütke-Eversloh T. New insights into the butyric acid metabolism of Clostridium acetobutylicum. Applied Microbiology and Biotechnology, 2012, 96(5): 1325–1339
|
[20] |
Heap J T, Cartman S T, Pennington O J, Cooksley C M, Scott J C, Blount B, Burns D A, Minton N P. Clostridia: Molecular Biology in the Post-genomic Era. Norfolk: Caister Academic Press, 2009, 179–198
|
[21] |
Heap J T, Pennington O J, Cartman S T, Carter G P, Minton N P. The ClosTron: A universal gene knock-out system for the genus Clostridium. Journal of Microbiological Methods, 2007, 70(3): 452–464
|
[22] |
Heap J T, Kuehne S A, Ehsaan M, Cartman S T, Cooksley C M, Scott J C, Minton N P. The ClosTron: Mutagenesis in Clostridium refined and streamlined. Journal of Microbiological Methods, 2010, 80(1): 49–55
|
[23] |
Durre P, Bohringer M, Nakotte S, Schaffer S, Thormann K, Zickner B. Transcriptional regulation of solventogenesis in Clostridium acetobutylicum. Journal of Molecular Microbiology and Biotechnology, 2002, 4(3): 295–300
|
[24] |
Lee S Y, Park J H, Jang S H, Nielsen L K, Kim J, Jung K S. Fermentative butanol production by clostridia. Biotechnology and Bioengineering, 2008, 101(2): 209–228
|
[25] |
Jang Y, Han M, Lee J, Im J A, Lee Y H, Papoutsakis E T, Bennett G, Lee S Y. Proteomic analyses of the phase transition from acidogenesis to solventogenesis using solventogenic and non-solventogenic Clostridium acetobutylicum strains. Applied Microbiology and Biotechnology, 2014, 98(11): 5105–5115
|
[26] |
Yang S, Giannone R J, Dice L, Yang Z K, Engle N L, Tschaplinski T J, Hettich R L, Brown S D. Clostridium thermocellum ATCC27405 transcriptomic, metabolomic and proteomic profiles after ethanol stress. BMC Genomics, 2012, 13(1): 336–353
|
[27] |
Nakayama S, Kosaka T, Hirakawa H, Matsuura K, Yoshino S, Furukawa K. Metabolic engineering for solvent productivity by downregulation of the hydrogenase gene cluster hupCBA in Clostridium saccharoperbutylacetonicum strain N1-4. Applied Microbiology and Biotechnology, 2008, 78(3): 483–493
|
[28] |
Inui M, Suda M, Kimura S, Yasuda K, Suzuki H, Toda H, Yamamoto S, Okino S, Suzuki N, Yukawa H. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Applied Microbiology and Biotechnology, 2008, 77(6): 1305–1316
|
[29] |
Grupe H, Gottschalk G. Physiological events in Clostridium acetobutylicum during the shift from acidogenesis to solventogenesis in continuous culture and presentation of a model for shift induction. Applied and Environmental Microbiology, 1992, 58(12): 3896–3902
|
[30] |
Berríos-Rivera S. The effect of increasing NADH availability on the redistribution of metabolic fluxes in Escherichia coli chemostat cultures. Metabolic Engineering, 2002, 4(3): 230–237
|
[31] |
Vemuri G N, Eiteman M A, McEwen J E, Olsson L, Nielsen J. Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(7): 2402–2407
|
[32] |
Jo J H, Lee D S, Park J M. The effects of pH on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1. Bioresource Technology, 2008, 99(17): 8485–8491
|
[33] |
Jiang M, Chen J, He A, Wu H, Kong X, Liu J, Yin C, Chen W, Chen P. Enhanced acetone/butanol/ethanol production by Clostridium beijerinckii IB4 using pH control strategy. Process Biochemistry, 2014, 49(8): 1238–1244
|
[34] |
Tsai T, Lo Y, Chang J. Effect of medium composition and pH control strategies on butanol fermentation with Clostridium acetobutylicum. Energy Procedia, 2014, 61: 1691–1694
|
[35] |
Vardar-Schara G, Maeda T, Wood T K. Metabolically engineered bacteria for producing hydrogen via fermentation. Microbial Biotechnology, 2008, 1(2): 107–125
|
[36] |
Li F, Hinderberger J, Seedorf H, Zhang J, Buckel W, Thauer R K. Coupled ferredoxin and crotonyl coenzyme A (CoA) reduction with NADH catalyzed by the butyryl-CoA dehydrogenase/Etf complex from Clostridium kluyveri. Journal of Bacteriology, 2008, 190(3): 843–850
|
[37] |
Shen C, Lan E, Dekishima Y, Baez A, Cho K M, Liao J. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Applied and Environmental Microbiology, 2011, 77(9): 2905–2915
|
[38] |
Yu R, Wang R, Bi T, Sun W, Zhou Z. Blocking the butyrate-formation pathway impairs hydrogen production in Clostridium perfringens. Acta Biochimica et Biophysica Sinica, 2013, 45(5): 408–415
|
[39] |
Wang Y, San K Y, Bennett G N. Cofactor engineering for advancing chemical biotechnology. Current Opinion in Biotechnology, 2013, 24(6): 994–999
|
[40] |
Du Y, Jiang W, Yu M, Tang I, Yang S. Metabolic process engineering of Clostridium tyrobutyricum Δack-adhE2 for enhanced n-butanol production from glucose: Effects of methyl viologen on NADH availability, flux distribution, and fermentation kinetics. Biotechnology and Bioengineering, 2015, 112(4): 705–715
|
[41] |
Ujor V, Agu C V, Gopalan V, Ezeji T C. Glycerol supplementation of the growth medium enhances in situ detoxification of furfural by Clostridium beijerinckii during butanol fermentation. Applied Microbiology and Biotechnology, 2014, 98(14): 6511–6521
|
[42] |
Hüsemann M H, Papoutsakis E T. Comparison between in vivo and in vitro enzyme activities in continuous and batch fermentations of Clostridium acetobutylicum. Applied Microbiology and Biotechnology, 1989, 30(6): 585–595
|
[43] |
Wiesenborn D P, Rudolph F B, Papoutsakis E T. Thiolase from Clostridium acetobutylicum ATCC 824 and its role in the synthesis of acids and solvents. Applied and Environmental Microbiology, 1988, 54(11): 2717–2722
|
[44] |
Lan E, Liao J. ATP drives direct photosynthetic production of 1-butanol in cyanobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 6018–6023
|
[45] |
Ventura J S, Hu H, Jahng D. Enhanced butanol production in Clostridium acetobutylicum ATCC 824 by double overexpression of 6-phosphofructokinase and pyruvate kinase genes. Applied Microbiology and Biotechnology, 2013, 97(16): 7505–7516
|
[46] |
Bowles L K, Ellefson W L. Effects of butanol on Clostridium acetobutylicum. Applied and Environmental Microbiology, 1985, 50(5): 1165–1170
|
[47] |
Wang J, Yang X, Chen C, Yang S. Engineering clostridia for butanol production from biorenewable resources: from cells to process integration. Current Opinion in Chemical Engineering, 2014, 6: 43–54
|
[48] |
Jo J H, Lee D S, Kim J, Park J M. Effect of initial glucose concentrations on carbon material and energy balances in hydrogen-producing Clostridium tyrobutyricum JM1. Journal of Microbiology and Biotechnology, 2009, 19(3): 291–298
|
[49] |
Herrmann G, Jayamani E, Mai G, Buckel W. Energy conservation via electron-transferring flavoprotein in anaerobic bacteria. Journal of Bacteriology, 2008, 190(3): 784–791
|
[50] |
Lan E, Liao J. Microbial synthesis of n-butanol, isobutanol, and other higher alcohols from diverse resources. Bioresource Technology, 2013, 135: 339–349
|
/
〈 | 〉 |