DsbA-DsbAmut fusion chaperon improved soluble expression of human trypsinogen-1 in Escherichia coli

Ye Liu , Wenyong Zhang , Xubin Yang , Guangbo Kang , Damei Wang , He Huang

Front. Chem. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (4) : 511 -521.

PDF (1089KB)
Front. Chem. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (4) : 511 -521. DOI: 10.1007/s11705-015-1519-1
RESEARCH ARTICLE
RESEARCH ARTICLE

DsbA-DsbAmut fusion chaperon improved soluble expression of human trypsinogen-1 in Escherichia coli

Author information +
History +
PDF (1089KB)

Abstract

A co-expressing system of DsbA-DsbAmut was suggested for the first time to enhance the soluble expression of human trypsin-1. As a control, leaderless DsbA chaperone was also co-expressed with human trypsin-1. Vectors pET39b-trypsin and pET28a-DsbA-DsbAmut-trypsin with the above two DsbA fusion tag were constructed. The strain with vector pET39b-trypsin expressed fusion protein DsbA-trypsin in form of inclusion bodies. While in E. coli BL21 (DE3) strain with vector pET28a-DsbA-DsbAmut-trypsin, the soluble expression of trypsin fusion protein was achieved. Under the optimized expression conditions, the soluble fraction accounted for about 49.43% of total DsbA-DsbAmut-trypsin proteins in crude supernatant. The purification yield was 4.15% by nickel chelating chromatography and 3.3 mg activated trypsin with a purity of 88.68% was obtained from 1 L LB broth. To detect the possible functions of DsbA series chaperons in trypsin fusion protein, we analyzed the primary three-dimensional structure of fusion proteins, mainly focusing on the compatibleness between trypsin and fusion chaperons. The results suggested that (1) besides the primary function in periplasm, leaderless DsbA or DsbAmut may also act as a signal sequences-like leader targeted to periplasm that partly relieved the pressure from fusion protein overexpression and inclusion body formation, and (2) as there was significant soluble expression of DsbA-DsbAmut-trypsin compared with DsbA-trypsin, DsbAmut may function as charge or hydrophobic balance in recombinant protein DsbA-DsbAmut-trypsin.

Graphical abstract

Keywords

DsbA / DsbA-DsbAmut / soluble expression / trypsin / chaperon

Cite this article

Download citation ▾
Ye Liu, Wenyong Zhang, Xubin Yang, Guangbo Kang, Damei Wang, He Huang. DsbA-DsbAmut fusion chaperon improved soluble expression of human trypsinogen-1 in Escherichia coli. Front. Chem. Sci. Eng., 2015, 9(4): 511-521 DOI:10.1007/s11705-015-1519-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kemmler WPeterson J DSteiner D F. Studies on the conversion of proinsulin to insulin. I. Conversion in vitro with trypsin and Carboxypeptidase B. Journal of Biological Chemistry1971246(22): 6786–6791

[2]

Marcus-Sekura CRichardson J CHarston R KSane NSheets R L. Evaluation of the human host range of bovine and porcine viruses that may contaminate bovine serum and porcine trypsin used in the manufacture of biological products. Biologicals201139(6): 359–369

[3]

Guy OLombardo DBartelt D CAmic JFigarella C. Two human trypsinogens. Purification, molecular properties, and N-terminal sequences. Biochemistry-US197817(9): 1669–1675

[4]

Kukor ZToth MSahin-Toth M. Human anionic trypsinogen—Properties of autocatalytic activation and degradation and implications in pancreatic diseases. European Journal of Biochemistry2003270(9): 2047–2058

[5]

Kiraly OGuan LSzepessy EToth MKukor ZSahin-Toth M. Expression of human cationic trypsinogen with an authentic N-terminus using intein-mediated splicing in Aminopeptidase P deficient Escherichia coliProtein Expression and Purification200648(1): 104–111

[6]

Chen J MKukor ZLe Marechal UToth MTsakiris LRaguenes OFerec CSahin-Toth M. Evolution of trypsinogen activation peptides. Molecular Biology and Evolution200320(11): 1767–1777

[7]

Vasquez J REvnin L BHigaki J NCraik C S. An expression system for trypsin. Journal of Cellular Biochemistry198939(3): 265–276

[8]

Szilagyi LKenesi EKatona GKaslik GJuhasz GGraf L. Comparative in vitro studies on native and recombinant human cationic trypsins. Cathepsin B is a possible pathological activator of trypsinogen in pancreatitis. Journal of Biological Chemistry2001276(27): 24574–24580

[9]

Peterson F CGordon N CGettins P G. High-level bacterial expression and 15N-alanine-labeling of bovine trypsin. Application to the study of trypsin-inhibitor complexes and trypsinogen activation by NMR spectroscopy. Biochemistry200140(21): 6275–6283

[10]

Hohenblum HVorauer-Uhl KKatinger HMattanovich D. Bacterial expression and refolding of human trypsinogen. Journal of Biotechnology2004109(1−2): 3–11

[11]

Lichty J JMalecki J LAgnew H DMichelson-Horowitz D JTan S. Comparison of affinity tags for protein purification. Protein Expression and Purification200541(1): 98–105

[12]

Esposito DChatterjee D K. Enhancement of soluble protein expression through the use of fusion tags. Current Opinion in Biotechnology200617(4): 353–358

[13]

Bardwell J CMcGovern KBeckwith J. Identification of a protein required for disulfide bond formation in vivoCell199167(3): 581–589

[14]

Guddat L WBardwell J C AMartin J L. Crystal structures of reduced and oxidized DsbA: Investigation of domain motion and thiolate stabilization. Structure19986(6): 757–767

[15]

Schirra H JRenner CCzisch MHuber-Wunderlich MHolak T AGlockshuber R. Structure of reduced DsbA from Escherichia coli in solution. Biochemistry199837(18): 6263–6276

[16]

Zapun ABardwell J CCreighton T E. <?Pub Caret1?>The reactive and destabilizing disulfide bond of DsbA, a protein required for protein disulfide bond formation in vivoBiochemistry199332(19): 5083–5092

[17]

Grauschopf UWinther J RKorber PZander TDallinger PBardwell J C. Why is DsbA such an oxidizing disulfide catalyst? Cell199583(6): 947–955

[18]

Winter JNeubauer PGlockshuber RRudolph R. Increased production of human proinsulin in the periplasmic space of Escherichia coli by fusion to DsbA. Journal of Biotechnology200184(2): 175–185

[19]

Dutta SGhosh RDattagupta J KBiswas S. Heterologous expression of a thermostable plant cysteine protease in Escherichia coli both in soluble and insoluble forms. Process Biochemistry201045(8): 1307–1312

[20]

Huang HGan Y RSun Y. Cloning and fusion expression of bovine enterokinase light chain gene in Escherichia coliHereditas200325(6): 685–690

[21]

Kim BHyun Y JLee K SKobashi KKim D H. Cloning, expression and purification of arylsulfate sulfotransferase from Eubacterium A-44. Biological & Pharmaceutical Bulletin200730(1): 11–14

[22]

Thorstenson Y RZhang YOlson P SMascarenhas D. Leaderless polypeptides efficiently extracted from whole cells by osmotic shock. Journal of Bacteriology1997179(17): 5333–5339

[23]

Zhang YOlsen D RNguyen K BOlson P SRhodes E TMascarenhas D. Expression of eukaryotic proteins in soluble form in Escherichia coliProtein Expression and Purification199812(2): 159–165

[24]

Schein C HNoteborn M H M. Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Nature Biotechnology19886(3): 291–294

[25]

Kopetzki ESchumacher GBuckel P. Control of formation of active soluble or inactive insoluble baker’s yeast alpha-glucosidase PI in Escherichia coli by induction and growth conditions. Molecular & General Genetics: MGG1989216(1): 149–155

[26]

Yang QXu JLi MLei XAn L. High-level expression of a soluble snake venom enzyme, gloshedobin, in E. coli in the presence of metal ions. Biotechnology Letters200325(8): 607–610

[27]

Ling ZMa TLi JDu GKang ZChen J. Functional expression of trypsin from Streptomyces griseus by Pichia pastorisJournal of Industrial Microbiology & Biotechnology201239(11): 1651–1662

[28]

Guex NPeitsch M C. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis199718(15): 2714–2723

[29]

Thaker Y RRoessle MGruber G. The boxing glove shape of subunit d of the yeast V-ATPase in solution and the importance of disulfide formation for folding of this protein. Journal of Bioenergetics and Biomembranes200739(4): 275–289

[30]

Diaz A ATomba ELennarson RRichard RBagajewicz M JHarrison R G. Prediction of protein solubility in Escherichia coli using logistic regression. Biotechnology and Bioengineering2010105(2): 374–383

[31]

Wilkinson D LHarrison R G. Predicting the solubility of recombinant proteins in Escherichia coli. Bio/Technology19919(5): 443–448

[32]

Shao SYu RYu YLi Y. Dual-inhibitors of STAT5 and STAT3: Studies from molecular docking and molecular dynamics simulations. Journal of Molecular Modeling201420(8): 2399

[33]

Shi CYu RShao SLi Y. Partial activation of alpha7 nicotinic acetylcholine receptors: Insights from molecular dynamics simulations. Journal of Molecular Modeling201319(2): 871–878

[34]

Sommaruga SDe Palma AMauri P LTrisciani MBasilico FMartelli P LCasadio RTortora POcchipinti E. A combined approach of mass spectrometry, molecular modeling, and site-directed mutagenesis highlights key structural features responsible for the thermostability of Sulfolobus solfataricus carboxypeptidase. Proteins200871(4): 1843–1852

[35]

Ewalt K LHendrick J PHoury W AHartl F U. In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell199790(3): 491–500

[36]

Baneyx FMujacic M. Recombinant protein folding and misfolding in Escherichia coliNature Biotechnology200422(11): 1399–1408

[37]

Couture M MAuger MRosell FMauk A GBoubour ELennox R BEltis L D. Investigation of the role of a surface patch in the self-association of Chromatium vinosum high potential iron-sulfur protein. Biochimica et Biophysica Acta19991433(1−2): 159–169

[38]

Rezaei-Ghaleh NRamshini HEbrahim-Habibi AMoosavi-Movahedi A ANemat-Gorgani M. Thermal aggregation of alpha-chymotrypsin: Role of hydrophobic and electrostatic interactions. Biophysical Chemistry2008132(1): 23–32

[39]

Kumarevel T SGromiha M MPonnuswamy M N. Analysis of hydrophobic and charged patches and influence of medium- and long-range interactions in molecular chaperones. Biophysical Chemistry199875(2): 105–113

[40]

Neupert WHartl F UCraig E APfanner N. How do polypeptides cross the mitochondrial membranes? Cell199063(3): 447–450

[41]

Flynn G CPohl JFlocco M TRothman J E. Peptide-binding specificity of the molecular chaperone BiP. Nature1991353(6346): 726–730

[42]

Richarme GKohiyama M. Specificity of the Escherichia coli chaperone DnaK (70-kDa heat shock protein) for hydrophobic amino acids. Journal of Biological Chemistry1993268(32): 24074–24077

[43]

Zbilut J PMitchell J CGiuliani AColosimo AMarwan NWebber C L. Singular hydrophobicity patterns and net charge: A mesoscopic principle for protein aggregation/folding. Physica A: Statistical Mechanics and its Applications2004343: 348–358

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (1089KB)

2543

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/