Rheological behavior of mixed system of ionic liquid [C8mim]Br and sodium oleate in water
Zimeng HE, Ling YUE, Meng LI, Yazhuo SHANG, Honglai LIU
Rheological behavior of mixed system of ionic liquid [C8mim]Br and sodium oleate in water
We report on the rheological behavior of wormlike micelles constructed by ionic liquid surfactant [C8mim]Br (1-octyl-3-methylimidazolium bromide) and anionic surfactant sodium oleate (NaOA) in aqueous solution. The effects of surfactant composition, total surfactant concentration, added salts, and temperature were investigated. The prevailing surfactant effect at lower concentration and the leading cosolvent effect at higher concentration of [C8mim]Br may be the main reasons for appearance of well-established maximum in key rheological parameters with variation of surfactant composition and total surfactant concentration. The Cole-Cole plots demonstrate that the systems (total surfactant concentration falls within 0.17–0.35 mol·L-1 and molar ratio 0.33≤R≤0.50) fit the Maxwell’s mechanical model as linear viscoelastic fluid. The addition of NaBr or sodium salicylate decreases significantly the viscosity and the relaxation time of the wormlike micelle solution but cannot change the value of plateau modulus G0. The present system has low rheological tolerance to temperature. The increase of temperature decreases the average contour length and viscosity of wormlike micelles and thus strengthens the relaxation progress of diffusion and weakens the relaxation progress of reptation. Increasing the temperature also decreases the value of plateau modulus G0 and shifts the minimum value of the loss modulus G″min to higher frequencies.
rheological behavior / ionic liquid surfactant / sodium oleate / wormlike micelles / viscoelasticity
[1] |
Helgeson M E, Hodgdon T K, Kaler E W, Wagner N J, Vethamuthu M, Ananthapadmanabhan K P. Formation and rheology of viscoelastic “double networks” in wormlike micelle-nanoparticle mixtures. Langmuir, 2010, 26(11): 8049-8060
|
[2] |
Wang X, Wang R, Zheng Y, Sun L, Yu L, Jiao J, Wang R. Interaction between zwitterionic surface activity ionic liquid and anionic surfactant: Na+-driven wormlike micelles. Journal of Physical Chemistry B, 2013, 117(6): 1886-1895
|
[3] |
Yin H, Lin Y, Huang J. Microstructures and rheological dynamics of viscoelastic solutions in a catanionic surfactant system. Journal of Colloid and Interface Science, 2009, 338(1): 177-183
|
[4] |
Garcia-Perez A, da Silva M A, Eriksson J, Gonzalez-Gaitano G, Valero M, Dreiss C A. Remarkable viscoelasticity in mixtures of cyclodextrins and nonionic surfactants. Langmuir, 2014, 30(39): 11552-11562
|
[5] |
Chandler H D. Activation energy and entropy for viscosity of wormlike micelle solutions. Journal of Colloid and Interface Science, 2013, 409: 98-103
|
[6] |
Lu H, Shi Q, Huang Z. pH-responsive anionic wormlike micelle based on sodium oleate induced by NaCl. Journal of Physical Chemistry B, 2014, 118(43): 12511-12517
|
[7] |
Davies T S, Ketner A M, Raghavan S R. Self-assembly of surfactant vesicles that transform into viscoelastic wormlike micelles upon heating. Journal of the American Chemical Society, 2006, 128(20): 6669-6675
|
[8] |
Yang J, Yang Z, Lu Y, Chen J, Qin W. Rheological properties of zwitterionic wormlike micelle in presence of solvents and cosurfactant at high temperature. Journal of Dispersion Science and Technology, 2013, 34(8): 1124-1129
|
[9] |
Dreiss C A. Wormlike micelles: where do we stand? Recent developments, linear rheology and scattering techniques. Soft Matter, 2007, 3(8): 956-970
|
[10] |
Acharya D P, Kunieda H. Wormlike micelles in mixed surfactant solutions. Advances in Colloid and Interface Science, 2006, 123 - 126: 401-413
|
[11] |
Yang J. Viscoelastic wormlike micelles and their applications. Colloid & Interface Science, 2002, 7(5,6): 276-281
|
[12] |
Maitland G C. Oil and gas production. Current Opinion in Colloid & Interface Science, 2000, 5(5,6): 301-311
|
[13] |
Zakin J L, Lu B, Bewersdorff H. Surfactant drag reduction. Reviews in Chemical Engineering, 1998, 14(4-5): 253-320
|
[14] |
Tian M, Zhu L, Yu D, Wang Y, Sun S, Wang Y. Aggregate transitions in mixtures of anionic sulfonate gemini surfactant with cationic ammonium single-chain surfactant. Journal of Physical Chemistry B, 2013, 117(1): 433-440
|
[15] |
Aikawa S, Shrestha R G, Ohmori T, Fukukita Y, Tezuka Y, Endo T, Torigoe K, Tsuchiya K, Sakamoto K, Sakai K, Abe M, Sakai H. Photorheological response of aqueous wormlike micelles with photocleavable surfactant. Langmuir, 2013, 29(19): 5668-5676
|
[16] |
Tang M, Carter W C. Branching mechanisms in surfactant micellar growth. Journal of Physical Chemistry B, 2013, 117(10): 2898-2905
|
[17] |
Kusano T, Iwase H, Yoshimura T, Shibayama M. Structural and rheological studies on growth of salt-free wormlike micelles formed by star-type trimeric surfactants. Langmuir, 2012, 28(49): 16798-16806
|
[18] |
Brinchi L, Germani R, Di Profio P, Marte L, Savelli G, Oda R, Berti D. Viscoelastic solutions formed by worm-like micelles of amine oxide surfactant. Journal of Colloid and Interface Science, 2010, 346(1): 100-106
|
[19] |
Pei X, Zhao J, Wei X. Wormlike micelles formed by mixed cationic and anionic gemini surfactants in aqueous solution. Journal of Colloid and Interface Science, 2011, 356(1): 176-181
|
[20] |
Shrestha R G, Shrestha L K, Aramaki K. Rheology of wormlike micelles in aqueous systems of a mixed amino acid-based anionic surfactant and cationic surfactant. Colloid & Polymer Science, 2009, 287(11): 1305-1315
|
[21] |
Shrestha R G, Sharma S C, Sakai K, Sakai H, Abe M. Polyoxyethylene cholesteryl ether-based aqueous wormlike micelles. Colloid & Polymer Science, 2012, 290(4): 339-348
|
[22] |
Sarmiento-Gomez E, Lopez-Diaz D, Castillo R. Microrheology and characteristic lengths in wormlike micelles made of a zwitterionic surfactant and SDS in brine. Journal of Physical Chemistry B, 2010, 114(38): 12193-12202
|
[23] |
Lu Y, Zhou T, Fan Q, Dong J, Li X. Light-responsive viscoelastic fluids based on anionic wormlike micelles. Journal of Colloid and Interface Science, 2013, 412: 107-111
|
[24] |
Mei Y, Han Y, Wang H, Xie L, Zhou H. Electrostatic effect on synergism of wormlike micelles and hydrophobically modified polyacrylic acid. Journal of Surfactants and Detergents, 2014, 17(2): 323-330
|
[25] |
Han Y, Wei Y, Wang H, Mei Y, Zhou H. Contrasting the effects of hydrophobicity and counterion size on anionic wormlike micelle growth. Journal of Surfactants and Detergents, 2013, 16(1): 139-145
|
[26] |
Koshy P, Aswal V K, Venkatesh M, Hassan P A. Unusual scaling in the rheology of branched wormlike micelles formed by cetyltrimethylammonium bromide and sodium oleate. Journal of Physical Chemistry B, 2011, 115(37): 10817-10825
|
[27] |
Li X P, Yu L, Ji Y Q, Wu B, Li G Z, Zheng L Q. New type flooding systems in enhanced oil recovery. Chinese Chemical Letters, 2009, 20(10): 1251-1254
|
[28] |
Ziserman L, Abezgauz L, Ramon O, Raghavan S R, Danino D. Origins of the viscosity peak in wormlike micellar solutions. Mixed cataionic surfactants. A cryo-transmission electron microscopy study. Langmuir, 2009, 25(18): 10483-10489
|
[29] |
Raghavan S R, Fritz G, Kaler E W. Wormlike micelles formed by synergistic self-assembly in mixtures of anionic and cationic surfactants. Langmuir, 2002, 18(10): 3797-3803
|
[30] |
Cao Q, Yu L, Zheng L Q, Li G Z, Ding Y H, Xiao J H. Rheological properties of wormlike micelles in sodium oleate solution induced by sodium ion. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 312(1): 32-38
|
[31] |
Griffin P J, Holt A P, Wang Y, Novikov V N, Sangoro J R, Kremer F, Sokolov A P. Interplay between hydrophobic aggregation and charge transport in the ionic liquid methyltrioctylammonium bis(trifluoromethylsulfonyl)imide. Journal of Physical Chemistry B, 2014, 118(3): 783-790
|
[32] |
Guo P, Guo R. Ionic liquid induced transition from wormlike to rod or spherical micelles in mixed nonionic surfactant systems. Journal of Chemical & Engineering Data, 2010, 55(9): 3590-3597
|
[33] |
Smith J A, Webber G B, Warr G G, Atkin R. Rheology of protic ionic liquids and their mixtures. Journal of Physical Chemistry B, 2013, 117(44): 13930-13935
|
[34] |
Lopez-Barron C R, Wagner N J. Structural transitions of CTAB micelles in a protic ionic liquid. Langmuir, 2012, 28(35): 12722-12730
|
[35] |
Page M G, Warr G G. Structure and dynamics of self-assembling aluminum didodecyl phosphate organogels. Journal of Physical Chemistry B, 2004, 108(43): 16983-16989
|
[36] |
Comelles F, Ribosa I, Gonzalez J J, Garcia M T. Micellization of sodium laurylethoxysulfate (SLES) and short chain imidazolium ionic liquids in aqueous solution. Journal of Colloid and Interface Science, 2014, 425: 44-51
|
[37] |
Francisco K R, da Silva M A, Sabadini E, Karlsson G, Dreiss C A. Effect of monomeric and polymeric co-solutes on cetyltrimethylammonium bromide wormlike micelles: Rheology, Cryo-TEM and small-angle neutron scattering. Journal of Colloid and Interface Science, 2010, 345(2): 351-359
|
[38] |
Geng X F, Hu X Q, Jia X C, Luo L J. Effects of sodium salicylate on the microstructure of a novel zwitterionic gemini surfactant and its rheological responses. Colloid & Polymer Science, 2014, 292(4): 915-921
|
[39] |
Shrestha R G, Shrestha L K, Matsunaga T, Shibayama M, Aramaki K. Lipophilic tail architecture and molecular structure of neutralizing agent for the controlled rheology of viscoelastic fluid in amino acid-based anionic surfactant system. Langmuir, 2011, 27(6): 2229-2236
|
[40] |
Zhang Y, Luo Y, Wang Y, Zhang J, Feng Y. Single-component wormlike micellar system formed by a carboxylbetaine surfactant with C22 saturated tail. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2013, 436: 71-79
|
[41] |
Li L, Yang Y, Dong J, Li X. Azobenzene dye induced micelle to vesicle transition in cationic surfactant aqueous solutions. Journal of Colloid and Interface Science, 2010, 343(2): 504-509
|
/
〈 | 〉 |