Organogelators based on p-alkoxylbenzamide and their self-assembling properties

Yan Zhai , Wei Chai , Wenwen Cao , Zipei Sun , Yaodong Huang

Front. Chem. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (4) : 488 -493.

PDF (982KB)
Front. Chem. Sci. Eng. ›› 2015, Vol. 9 ›› Issue (4) : 488 -493. DOI: 10.1007/s11705-015-1503-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Organogelators based on p-alkoxylbenzamide and their self-assembling properties

Author information +
History +
PDF (982KB)

Abstract

A series of p-alkoxylbenzamides featuring a long alkyl chain have been synthesized and are readily to form stable gels in a variety of organic solvents. Their self-assembly properties and structure-property relationship were investigated by scanning electron microscopy, X-ray diffraction, 1H nuclear magnetic resonance, and Fourier transform infrared spectroscopy. The gels formed were multi-responsive to environmental stimuli such as temperature and fluoride anion. The results show that a combination of hydrogen bonding, π-π stacking and van der Waals interaction result in the aggregation of p-alkoxylbenzamides to form three-dimension networks, depending on the length of the long alkyl chain.

Graphical abstract

Keywords

p-alkoxylbenzamide / organogelator / self-assembly / gelation

Cite this article

Download citation ▾
Yan Zhai, Wei Chai, Wenwen Cao, Zipei Sun, Yaodong Huang. Organogelators based on p-alkoxylbenzamide and their self-assembling properties. Front. Chem. Sci. Eng., 2015, 9(4): 488-493 DOI:10.1007/s11705-015-1503-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aldred M PEastwood A JKelly S MVlachos PContoret A E AFarrar S RMansoor BO’Neill MTsoi W C. Light-emitting fluorene photoreactive liquid crystals for organic electroluminescence. Chemistry of Materials200416(24): 4928–4936

[2]

Hafkamp R JKokke P ADanke I MGuerts H P MRowan A EFeiters M CNolte R J M. Organogel formation and molecular imprinting by functionalized gluconamides and their metal complexes. Chemical Communications19976(6): 545–546

[3]

Dai HChen QQin HGuan YShen DHua YTang YXu J. A temperature responsive copolymer hydrogel in controlled drug delivery. Macromolecules200639(19): 6584–6589

[4]

Kuroiwa KShibata TTakada ANemoto NKimizuka N. Heat-set gel-like networks of lipophilic Co(II) triazole complexes in organic media and their thermochromic structural transitions. Journal of the American Chemical Society2004126(7): 2016–2021

[5]

Mizrahi SGun JKipervaser Z GLev O A. Electrophoresis in organogels. Chemical Communications200476: 5399–5404

[6]

Terech PWeiss R G. Low molecular mass gelators of organic liquids and the properties of their gels. Chemical Reviews199797(8): 3133–3160

[7]

Van Esch J HFeringa B L. New functional materials based on self-assembling organogels: from serendipity towards design. Angewandte Chemie International Edition200039(13): 2263–2266

[8]

Gronwald OShinkai S. Sugar-integrated gelators of organic solvents. Chemistry (Weinheim an der Bergstrasse, Germany)20017(20): 4328–4334

[9]

Fages FVogtle FZinic M. Systematic design of amide and urea type gelators with tilored properties. Topics in Current Chemistry200637(33): 77–78

[10]

Abdallah D JWeiss R Gn-Alkanes gel n-alkanes (and many other organic liquids). Langmuir200016(2): 352–355

[11]

Chow H FZhang JLo C MCheung S YWong K W. Improving the gelation properties of 3,5-diaminobenzoate-basedorganogelators in Aromatic solvents with additional aromatic-containing Pendants. Tetrahedron200763(2): 363–365

[12]

Murata KAoki MNishi TIkeda AShinkai S. New cholesterol-based gelators with light-and metal-responsive functions. Chemical Communications199124(24): 1715–1718

[13]

Naota TKoori H J. Molecules that assemble by sound: an application to the instant gelation of stable organic fluids. Journal of the American Chemical Society2005127(26): 9324–9325

[14]

Kawano S IFujita NShinkai S. A coordination gelator that shows a reversible chromatic change and sol-gel phase-transition behavior upon oxidative/reductive stimuli. Journal of the American Chemical Society2004126(28): 8592–8593

[15]

Wang CRobertson AWeiss R G. “Latent” trialkylphosphine and trialkylphosphine oxide organogelators activated by Brønsted and Lewis Acids. Langmuir200319(4): 1036–1046

[16]

Aggeli ABell MBoden NKeen J NKnowles P FMcLeish T C BPitkeathly MRadford S E. Responsive gels formed by the spontaneous self-assembly of peptides into polymeric beta-sheet tapes. Nature1997386(622): 259–262

[17]

Liu J WYang YChen C FMa J T. Novel anion-tuning supramolecular  gels  with  dual-channel  response: Reversible  sol-gel transition and color changes. Langmuir201026(11): 9040–9044

[18]

Luo X ZLiu BLiang Y Q. Self-assembled organogels formed by mono-chain-alanine derivatives. Chemical Communications200117(17): 1556–1557

[19]

Luo X ZLi CLiang Y Q. Self-assembled organogels formed by monoalkyl derivatives of oxamide. Chemical Communications200017(21): 2091–2092

[20]

Huang Y DTu WYuan Y QFan D L. Novel organogelators based on pyrazine-2, 5-dicarboxylic acid derivatives and their mesomorphic behaviors. Tetrahedron201470(6): 127–1282

[21]

Huang Y DDong X LZhang L LChai WChang J Y. Structure-property correlation of benzoyl thiourea derivatives as organogelators. Journal of Molecular Structure20131031: 43–48

[22]

Maeda H. Anion-responsive supramolecular gels. Chemistry (Weinheim an der Bergstrasse, Germany)200814(36): 11274–11282

[23]

Cametti MRissanen K. Highlights on contemporary recognition and sensing of fluoride anion in solution and in the solid state. Chemical Society Reviews201342(5): 2016–2038

[24]

Zhang Y MLin QWei T BQin X PLi Y. A novel smart organogel which could allow a two channel anion response by proton controlled reversible sol-gel transition and color changes. Chemical Communications (Cambridge)2009 (40): 6074–6076

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (982KB)

2325

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/