Influences of spinel type and polymeric surfactants on the size evolution of colloidal magnetic nanocrystals (MFe2O4, M= Fe, Mn)

Tahereh R. BASTAMI, Mohammad H. ENTEZARI, Chiwai KWONG, Shizhang QIAO

PDF(1149 KB)
PDF(1149 KB)
Front. Chem. Sci. Eng. ›› 2014, Vol. 8 ›› Issue (3) : 378-385. DOI: 10.1007/s11705-014-1441-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Influences of spinel type and polymeric surfactants on the size evolution of colloidal magnetic nanocrystals (MFe2O4, M= Fe, Mn)

Author information +
History +

Abstract

Two types of polymeric surfactants, PEG300 and PVP40000 , were used for the preparation of magnetic ferrite MFe2O4 (M= Mn, Fe) colloidal nanocrystals using a solvothermal reaction method. The effect of spinel type effect on the size evolution of various nanoparticles was investigated. It was found that Fe3O4 nanoparticles exhibited higher crystalinity and size evolution than MnFe2O4 nanoparticles with use of the two surfactants. It is proposed that this observation is due to fewer tendencies of surfactants on the surface of Fe3O4 building blocks nanoparticles than MnFe2O4. Less amounts of surfactant or capping agent on the surface of nanoparticles lead to the higher crystalibity and larger size. It is also suggested that the type of spinel (normal or inverted spinel) plays a key role on the affinity of the polymeric surfactant on the surface of building blocks.

Keywords

spinel type / polymeric surfactant / size evolution / mangnetic ferrite nanoparticle

Cite this article

Download citation ▾
Tahereh R. BASTAMI, Mohammad H. ENTEZARI, Chiwai KWONG, Shizhang QIAO. Influences of spinel type and polymeric surfactants on the size evolution of colloidal magnetic nanocrystals (MFe2O4, M= Fe, Mn). Front. Chem. Sci. Eng., 2014, 8(3): 378‒385 https://doi.org/10.1007/s11705-014-1441-y

References

[1]
Gupta A K, Curtis A S G. Surface modified superparamagnetic nanoparticles for drug delivery interaction studies with human fibroblasts in culture. Journal of Materials Science. Materials in Medicine, 2004, 15(4): 493–496
[2]
Hergt R, Hiergeist R, Hilger I, Kaiser W A, Lapatnikov Y, Margel S, Richter U. Maghemite nanoparticles with very high AC-losses for application in RF-magnetic hyperthermia. Journal of Magnetism and Magnetic Materials, 2004, 270(3): 345–357
[3]
Johannsen M, Jordan A, Scholz R, Koch M, Lein M, Deger S, Roigas J, Jung K, Loening S. Evaluation of magnetic fluid hyperthermia in a standard rat model of prostate cancer. Journal of Endourology, 2004, 18(5): 495–500
[4]
Liu T, Liu L, Liu J, Liu S, Qiao S Z. Fe3O4 encapsulated mesoporous silica nanospheres with tunable size and large void pore. Frontiers of Chemical Science and Engineering, 2014, 8 (1): 114–122
[5]
Li G X, Joshi V, White R L, Wang S X, Kemp J T, Webb C, Davis R W, Sun S H. Detection of single micron-sized magnetic bead and magnetic nanoparticles using spin valve sensors for biological applications. Journal of Applied Physics, 2003, 93(10): 7557–7559
[6]
Zeng H, Li J, Wang Z L, Liu J P, Sun S H. Bimagnetic Core/Shell FePt/Fe3O4 Nanoparticles. Nano Letters, 2004, 4(1): 187–190
[7]
Chaudhuri A, Mandal M, Mandal K. Preparation and study of NiFe2O4/SiO2 core–shell nanocomposites. Journal of Alloys and Compounds, 2009, 487(1–2): 698–702
[8]
Carta D, Casula M F, Falqui A, Loche D, Mountjoy G, Sangregorio C, Corrias A. A structural and magnetic investigation of the inversion degree in ferrite nanocrystals MFe2O4 (M = Mn, Co, Ni). Journal of Physical Chemistry C, 2009, 113(20): 8606–8615
[9]
Sickafus K E, Wills J M, Grimes N W. Structure of spinel. Journal of the American Ceramic Society, 1999, 82(12): 3279–3292
[10]
Tang Z X, Sorensen C M, Klabunde K J, Hadjipanayis G C. Size-dependent Curie temperature in nanoscale MnFe2O4 particles. Physical Review Letters, 1991, 67(25): 3602–3605
[11]
Lee J F, Huh Y M, Jun Y M, Seo J W, Jang J T, Song H T, Kim S, Cho E J H G, Yoon J S, Cheon J. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nature Medicine, 2006, 13(1): 95–99
[12]
Wang J, Wu Y, Zhu Y. Cation distribution of MnFe2O4 nanoparticles synthesized under an induced magnetic field. International Journal of Modern Physics B, 2007, 21(5): 723–729
[13]
Cornell R M, Schwertmann U. The iron oxides: Structure, properties, reactions occurrence and uses. 2nd ed. Weinham: Willey-VCH Verlag GmbH & Co., 2003
[14]
Lattuada M, Hatton T A. Functionalization of monodisperse magnetic nanoparticles. Langmuir, 2007, 23(4): 2158–2168
[15]
Zhang L, He R, Gu H C. Oleic acid coating on the monodisperse magnetite nanoparticles. Applied Surface Science, 2006, 253(5): 2611–2617
[16]
Vestal C R, Zhang Z J. Effects of surface coordination chemistry on the magnetic properties of MnFe2O4 spinel ferrite nanoparticles. Journal of the American Chemical Society, 2003, 125(32): 9828–9833
[17]
Park J Y, Daksha P, Lee G H, Woo S, Chang Y. Highly water-dispersible PEG surface modified ultra small superparamagnetic iron oxide nanoparticles useful for target-specific biomedical applications. Nanotechnology, 2008, 19(36): 1–7
[18]
Tromsdorf U I, Bigall N C, Kaul M G, Bruns O T, Nikolic M S, Mollwitz B, Sperling R A, Reimer R, Hohenberg H, Parak W J, Förster S, Beisiegel U, Adam G, Weller H. Size and surface effects on the MRI relaxivity of manganese ferrite nanoparticle contrast agents. Nano Letters, 2007, 7(8): 2422–2427
[19]
Palma R D, Peeters S, Van Bael M J, Van den Rul H, Bonroy K, Laureyn W, Mullens J, Borghs G, Maes G. Silane ligand exchange to make hydrophobic superparamagnetic nanoparticles water-dispersible. Chemistry of Materials, 2007, 19(7): 1821–1831
[20]
Cheng F Y, Su C H, Yang Y S, Yeh C S, Tsai C Y, Wu C L, Wu M T, Shieh D B. Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials, 2005, 26(7): 729–738
[21]
Deng H, Li X, Peng Q, Wang X, Chen J, Li Y. Monodisperse magnetic single-crystal ferrite microspheres. Angewandte Chemie International Edition, 2005, 44(18): 2782–2785
[22]
Cullity B D. Elements of X-ray diffraction. Massachusetts: Addison Wesley, 1978
[23]
Rohani Bastami T, Entezari M H, Hu Q H, Hartono S B, Qiao S Z. Chemical Engineering Journal, 2012, 210: 157–165
[24]
Zhang J, Wang Y, Zheng J, Huang F, Chen D, Lan Y, Ren G, Lin Z, Wang C. Oriented attachment kinetics for ligand capped nanocrystals: Coarsening of thiol-PbS nanoparticle. Journal of Physical Chemistry B, 2007, 111(6): 1449–1454
[25]
Sahoo Y, Pizem H, Fried T, Golodnitsky D, Burstein L, Sukenik C N, Markovich G. Alkyl phosphonate/phosphate coating on magnetite nanoparticles: A comparison with fatty acids. Langmuir, 2001, 17(25): 7907–7911
[26]
Swami A, Kumar A, Sastry M. Formation of water-dispersible gold nanoparticles using a technique based on surface-bound interdigitated bilayers. Langmuir, 2003, 19(4): 1168–1172
[27]
Zhang L, He R, Gu H C. Oleic acid coating on the monodisperse magnetite nanoparticles. Applied Surface Science, 2006, 253(5): 2611–2617
[28]
Yee C, Kataby G, Ulman A, Prozorov T, White H, King A, Rafailovich M, Sokolov J, Gedanken A. Self-assembled monolayers of alkanesulfonic and phosphonic acids on amorphous iron oxide nanoparticles. Langmuir, 1999, 15(21): 7111–7115

Acknowledgement

This work was financially supported by the Australian Research Council (ARC) Discovery Projects (DP140104062 and DP130104459).ƒ

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(1149 KB)

Accesses

Citations

Detail

Sections
Recommended

/