CuAlCl4 doped MIL-101 as a high capacity CO adsorbent with selectivity over N2

Yixiu WANG, Chao LI, Fanchao MENG, Shuling LV, Jintao GUO, Xiaoqin LIU, Chongqing WANG, Zhengfei MA

PDF(607 KB)
PDF(607 KB)
Front. Chem. Sci. Eng. ›› 2014, Vol. 8 ›› Issue (3) : 340-345. DOI: 10.1007/s11705-014-1438-6
RESEARCH ARTICLE

CuAlCl4 doped MIL-101 as a high capacity CO adsorbent with selectivity over N2

Author information +
History +

Abstract

A CuAlCl4 doped metal organic framework, CuAlCl4@MIL-101, was prepared by introducing CuAlCl4 into the pores of MIL-101 for the selective adsorption of CO over N2. The CuAlCl4 molecules were evenly distributed into various pores sizes and did not change the intrinsic structure of the MIL-101. Isotherms for CO and N2 adsorption at 298 K showed that the CO capacity on CuAlCl4@MIL-101 was much higher than that on virgin MIL-101, whereas the N2 capacity decreased. The selectivity for CO over N2 improved from 4.64 to 31.5 at 298 K and 1 bar. The CuAlCl4@MIL-101 adsorbent displayed outstanding CO adsorption stability and the adsorbent could be regenerated by applying a simple vacuum of 4 mmHg.

Keywords

metal organic framework / CO adsorbent / high stability / high selectivity / CuAlCl4

Cite this article

Download citation ▾
Yixiu WANG, Chao LI, Fanchao MENG, Shuling LV, Jintao GUO, Xiaoqin LIU, Chongqing WANG, Zhengfei MA. CuAlCl4 doped MIL-101 as a high capacity CO adsorbent with selectivity over N2. Front. Chem. Sci. Eng., 2014, 8(3): 340‒345 https://doi.org/10.1007/s11705-014-1438-6

References

[1]
Singh B, Saxena A, Srivastava A K, Vijayaraghavan R. Impregnated carbon based catalyst for protection against carbon monoxide gas. Applied Catalysis B: Environmental, 2009, 88(3–4): 257–262
[2]
Saha D, Deng S. Adsorption equilibria and kinetics of carbon monoxide on zeolite 5Å, 13X, MOF-5, and MOF-177. Journal of Chemical & Engineering Data, 2009, 54(8): 2245–2250
[3]
Xie Y C, Zhang J P, Qiu J G, Tong X Z, Fu J P, Yang G, Yan H J, Tang Y Q. Zeolites modified by CuCl for separating CO from gas mixtures containing CO2. Adsorption-Journal of the International Adsorption Society, 1996, 3(1): 27–32
[4]
Noyes W. Military problems with aerosols and nonpersistent gases. National Defence Research Committee report division, 1946, 10
[5]
Beebe R A, Wildner E L. The heat of adsorption of carbon monoxide on copper I. Journal of the American Chemical Society, 1934, 56(3): 642–645
[6]
Kohl A, Riesenfeld F. Gas Purification. Texas: Gulf Publishing Company, 1985
[7]
Hogendoorn J A, Vanswaaij W P M, Versteeg G F. The absorption of carbon-monoxide in cosrb solutions—absorption rate and capacity. Chemical Engineering Journal and the Biochemical Engineering Journal, 1995, 59(3): 243–252
[8]
Keyworth D A, Haase D J, Walker D G, Turnbo R G. Low-cost carbon-monoxide using COSORB process. Abstracts of Papers of the American Chemical Society, 1978, 175(Mar): 66–66
[9]
Kasuya F, Tsuji T. High purity CO gas separation by pressure swing adsorption. Gas Separation & Purification, 1991, 5(4): 242–246
[10]
Yokoe J, Taki K, Aokata T T T, Kida M, Kasuya F. High-purity CO gas separation system by pressure swing adsorption method. In: Gas Separation Technology: Proceedings of the International Symposium on Gas Separation Technology
[11]
Hirai H, Komiyama M, Wada K. Active carbon-supported aluminum copper chloride as water-resistant carbon-monoxide adsorbent. Chemistry Letters, 1982, 7: 1025–1028
[12]
Ferey G, Mellot-Draznieks C, Serre C, Millange F, Dutour J, Surble S, Margiolaki I. A chromium terephthalate-based solid with unusually large pore volumes and surface area. Science, 2005, 309(5743): 2040–2042
[13]
Wang X, Li H, Hou X J. Amine-functionalized metal organic framework as a highly selective adsorbent for CO2 over CO. Journal of Physical Chemistry C, 2012, 116(37): 19814–19821
[14]
Yang J F, Zhao Q, Li J P, Dong J X. Synthesis of metal-organic framework MIL-101 in TMAOH-Cr(NO3)(3)-H2BDC-H2O and its hydrogen-storage behavior. Microporous and Mesoporous Materials, 2010, 130(1–3): 174–179
[15]
Hong D Y, Hwang Y K, Serre C, Ferey G, Chang J S. Porous chromium terephthalate MIL-101 with coordinatively unsaturated sites: Surface functionalization, encapsulation, sorption and catalysis. Advanced Functional Materials, 2009, 19(10): 1537–1552
[16]
Hwang Y K, Hong D Y, Chang J S, Jung S H, Seo Y K, Kim J, Vimont A, Daturi M, Serre C, Ferey G. Amine grafting on coordinatively unsaturated metal centers of MOFs: Consequences for catalysis and metal encapsulation. Angewandte Chemie International Edition, 2008, 47(22): 4144–4148
[17]
Henschel A, Gedrich K, Kraehnert R, Kaskel S. Catalytic properties of MIL-101. Chemical Communications, 2008, 35: 4192–4194
[18]
Xiang Z H, Hu Z, Yang W T, Cao D P. Lithium doping on metal-organic frameworks for enhancing H-2 Storage. International Journal of Hydrogen Energy, 2012, 37(1): 946–950

Acknowledgments

We thank Xiaoxiao Chen for assistance in the synthesis, Yong Chen for his help with the adsorption measurements, and Yu Jin for BET surface area analysis.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(607 KB)

Accesses

Citations

Detail

Sections
Recommended

/