Synthesis and fluorescence behavior of 2,5-diphenyl-1,3,4-oxadiazole-containing bismaleimides and bissuccinimides

Xin ZHANG, Zichen LI

PDF(251 KB)
PDF(251 KB)
Front. Chem. Sci. Eng. ›› 2013, Vol. 7 ›› Issue (4) : 381-387. DOI: 10.1007/s11705-013-1359-9
RESEARCH ARTICLE
RESEARCH ARTICLE

Synthesis and fluorescence behavior of 2,5-diphenyl-1,3,4-oxadiazole-containing bismaleimides and bissuccinimides

Author information +
History +

Abstract

Bismaleimides bearing 2,5-diphenyl-1,3,4-oxadiazole chromophores at para, meta, ortho position and corresponding saturated bissuccinimides were synthesized. Several synthetic strategies for these bismaleimides were discussed in detail. Almost no or very weak fluorescence was observed for these bismaleimides, however, the bissuccinimides show a strong fluorescence. The effect of molecular geometry on optical behavior and fluorescence quenching mechanism were investigated by UV-vis absorption and fluorescence emission spectroscopy. The electron coupling of ground state of p-bismaleimide is stronger than those of m- and o-bismaleimides. p-Bissuccinimide displays increasing fluorescence quantum yields with red shifts of 22–24 nm, compared to m-bissuccinimide. Polymerizable C=C bonds play a key role in the intramolecular fluorescence quenching.

Keywords

fluorescence / bismaleimide / oxadiazole / succinimide

Cite this article

Download citation ▾
Xin ZHANG, Zichen LI. Synthesis and fluorescence behavior of 2,5-diphenyl-1,3,4-oxadiazole-containing bismaleimides and bissuccinimides. Front Chem Sci Eng, 2013, 7(4): 381‒387 https://doi.org/10.1007/s11705-013-1359-9

References

[1]
Gandini A. The furan/maleimide Diels-Alder reaction: A versatile click–unclick tool in macro molecular synthesis. Progress in Polymer Science, 2013, 38(1): 1–29
CrossRef Google scholar
[2]
Warman J M, Abellon R D, Verhey H J, Verboeven J W, Hofstraat J W. Maleimido-fluoroprobe: A dual-purpose fluorogenic probe of polymerization dynamics. Journal of Physical Chemistry B, 1997, 101(25): 4913–4916
CrossRef Google scholar
[3]
Zhang X, Li Z C, Li K B, Lin S, Du F S, Li F M. Donor/acceptor vinyl monomers and their polymers: synthesis, photochemical and photophysical behavior. Progress in Polymer Science, 2006, 31(10): 893–948
CrossRef Google scholar
[4]
Broyer R M, Grover G N, Maynard H D. Emerging synthetic approaches for protein-polymer conjugations. Chemical Communications, 2011, 47(8): 2212–2226
CrossRef Google scholar
[5]
Wang B B, Zhang X, Jia X R, Li Z C, Ji Y, Yang L, Wei Y. Fluorescence and aggregation behavior of poly(amidoamine) dendrimers peripherally modified with aromatic chromophores: The effect of dendritic architectures. Journal of the American Chemical Society, 2004, 126(46): 15180–15194
CrossRef Google scholar
[6]
Sahoo M K, Mhaske S B, Argade N P. Facile routes to alkoxymaleimides/maleic anhydrides. Synthesis, 2003, 7(4): 346–349
[7]
Corrie J E T, Munasinghe V R N, Rettig W. Synthesis and fluorescence properties of substituted 7-aminocoumarin-3-carboxylate derivatives. Journal of Heterocyclic Chemistry, 2000, 37(6): 1447–1455
CrossRef Google scholar
[8]
Wu H P, Aumann R, Frohlich R, Wibbeling B, Kataeva O. Highly selective formation of [4+2] and [4+3] cycloadducts of tetrahydroindenes generated in situ from a (1-alkynyl)carbene tungsten complex by the metalla-1,3,5-hexatriene route. Chemistry (Weinheim an der Bergstrasse, Germany), 2001, 7(23): 5084–5093
CrossRef Google scholar
[9]
Gousse C, Gandini A. Diels–Alder polymerization of difurans with bismaleimides. Polymer International, 1999, 48(8): 723–731
CrossRef Google scholar
[10]
Nicolaou K C, Zhong Y L, Baran P S, Jung J, Choi H S, Yoon W H. Completion and synthesis of advanced analogs. Journal of the American Chemical Society, 2002, 124(10): 2202–2211
CrossRef Google scholar
[11]
Zhang X, Li Z C, Li K B, Du F S, Li F M. Multi-maleimides bearing electron-donating chromophores: Reversible fluorescence and aggregation behavior. Journal of the American Chemical Society, 2004, 126(39): 12200–12201
CrossRef Google scholar
[12]
Du F S, Li Z C, Li F M. Vinyl monomers bearing chromophore moieties and their polymers. VIII. Synthesis and fluorescence behavior of a vinyloxy monomer having an electron-accepting chromophore moiety, p-((vinyloxy)methyl)benzonitrile, and its polymers. Journal of Polymer Science. Part A, Polymer Chemistry, 1999, 37(2): 179–187
CrossRef Google scholar
[13]
Tanaka F, Thayumanavan R, Barbas C F. Fluorescent detection of carbon–carbon bond formation. Journal of the American Chemical Society, 2003, 125(28): 8523–8528
CrossRef Google scholar
[14]
Girouard S, Houle M H, Grandbois A, Keillor J W, Michnick S W. Synthesis and characterization of dimaleimide fluorogens designed for specific labeling of proteins. Journal of the American Chemical Society, 2005, 127(2): 559–566
CrossRef Google scholar
[15]
Miller C W, Jonsson E S, Hoyle C E, Viswanathan K, Valente E J. Evaluation of N-aromatic maleimides as free radical photoinitiators: A photophysical and photopolymerization characterization. Journal of Physical Chemistry B, 2001, 105(14): 2707–2717
CrossRef Google scholar
[16]
Trost B M, Kallander L S. A versatile enantioselective strategy toward L-C-nucleosides: A total synthesis of L-Showdomycin. Journal of Organic Chemistry, 1999, 64(15): 5427–5435
CrossRef Google scholar
[17]
Cheng S H, Hsiao S H, Su T H, Liou G S. Novel aromatic poly(amine-imide)s bearing a pendent triphenylamine group: synthesis, thermal, photophysical, electrochemical, and electrochromic characteristics. Macromolecules, 2005, 38(2): 307–316
CrossRef Google scholar
[18]
Wang C, Zhang C, Wang P, Zhu P, Wu W, Ye C, Dalton L R. High Tg donor-embedded polyimides for second-order nonlinear optical applications. Polymer, 2000, 41(7): 2583–2590
CrossRef Google scholar
[19]
Saegusa Y, Koshikawa T, Nakamura S. Synthesis and characterization of 1,3,4-oxadiazole-containing polyazomethines. Journal of Polymer Science. Part A, Polymer Chemistry, 1992, 30(7): 1369–1373
CrossRef Google scholar
[20]
Reddy P Y, Kondo S, Fujita S, Toru T. Efficient synthesis of fluorophore-linked maleimide derivatives. Synthesis, 1998, 8(9): 999–1002
CrossRef Google scholar
[21]
Conley N R, Hung R J, Willson C G. A new synthetic route to authentic N-substituted aminomaleimides. Journal of Organic Chemistry, 2005, 70(11): 4553–4555
CrossRef Google scholar
[22]
Fruk L, Graham D. The electronic effects on the formation of N-arylmaleimides and isomaleimides. Heterocycles, 2003, 60(10): 2305–2313
CrossRef Google scholar
[23]
Ivanov D, Constantinescu M. Computational study of maleamic acid cyclodehydration. Journal of Physical Organic Chemistry, 2003, 16(6): 348–354
CrossRef Google scholar
[24]
Chihab-Eddine A, Daich A, Jilale A, Decroix B. Synthesis and reactivity of (1S)-N-(1-phenylethyl) maleimide towards nucleophiles: An application to preparation of chiral pyrroloisothiochroman and pyrrolobenzo[d]thiepine based on pi-cationic cyclization. Tetrahedron Letters, 2001, 42(4): 573–576
CrossRef Google scholar
[25]
Clevenger R C, Turnbull K D. Synthesis on N-alkylated maleimides. Synthetic Communications, 2000, 30(8): 1379–1388
CrossRef Google scholar
[26]
Berson J A, Swidler R A. Synthesis of maleimide. Journal of the American Chemical Society, 1954, 76(10): 2835–2836
CrossRef Google scholar
[27]
Hattemer E, Zentel R, Mecher E, Meerholz K. Synthesis and characterization of novel multifunctional high-Tg photorefractive materials obtained via reactive precursor polymers. Macromolecules, 2000, 33(6): 1972–1977
CrossRef Google scholar
[28]
Aponte M A, Butler G B. Copolymers containing alternating sequences of nucleic acid-base pairs. I. Monomer synthesis. Journal of Polymer Science. Part A, Polymer Chemistry, 1984, 22(11): 2841–2858
CrossRef Google scholar
[29]
Schwartz A L, Lerner L M. Synthesis and properties of N-(2,3,5-tri-O-acetyl-D-ribofuranosyl) maleimide. Journal of Organic Chemistry, 1975, 40(1): 24–28
CrossRef Google scholar
[30]
King H D, Dubowchik G M, Walker M A. Walker, M. A. Facile synthesis of maleimide bifunctional linkers. Tetrahedron Letters, 2002, 43(11): 1987–1990
CrossRef Google scholar
[31]
Walker M A. A high yielding synthesis of N-alkyl maleimides using a novel modification of the Mitsunobu reaction. Journal of Organic Chemistry, 1995, 60(16): 5352–5355
CrossRef Google scholar
[32]
Berlin Y A, Hutchison G R, Rempala P, Ratner M A, Michl J. Charge hopping in molecular wires as a sequence of electron-transfer reactions. Journal of Physical Chemistry A, 2003, 107(19): 3970–3980
CrossRef Google scholar
[33]
Mataga N, Kaifu Y, Koizumi M. Solvent effects upon fluorescence spectra and the dipole moments of excited molecules. Bulletin of the Chemical Society of Japan, 1956, 29(4): 465–470
CrossRef Google scholar
[34]
Von Lippert E Z. Spektroskopische Bestimmung des Dipolmomentes Aromatischer Verbin- dungen im Ersten Angeregten Singuletzustand. Electrochemistry, 1957, 61(9): 962–975
[35]
Lakowicz J R. Principles of Fluorescence Spectroscopy, 2nd ed. Plenum Press: New York, 1999, 192
[36]
Kanaoka Y, Machida M, Ando K, Sekine T. N-(1-Anilinonaphthyl-4)maleimide: A fluorescent hydrophobic probe directed to thiol groups in protein. Biochimica et Biophysica Acta, 1970, 207(1): 269–277
CrossRef Google scholar
[37]
Verhey H J, Bekker C H W, Verhoeven J W, Hofstraat J W. A fluorogenic charge-transfer polarity probe for the derivatisation of thiols and amines. New Journal of Chemistry, 1996, 20(7-8): 809–814

Acknowledgments

We thank the Alexander von Humboldt Foundation and Mrs. Elisabeth, and Dr. Georg Krohne for their kind help.
Supporting information for this article is available free of charge via the Internet.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(251 KB)

Accesses

Citations

Detail

Sections
Recommended

/