Mesoporous zeolites as efficient catalysts for oil refining and natural gas conversion

Jie ZHU, Xiangju MENG, Fengshou XIAO

PDF(862 KB)
PDF(862 KB)
Front. Chem. Sci. Eng. ›› 2013, Vol. 7 ›› Issue (2) : 233-248. DOI: 10.1007/s11705-013-1329-2
REVIEW ARTICLE
REVIEW ARTICLE

Mesoporous zeolites as efficient catalysts for oil refining and natural gas conversion

Author information +
History +

Abstract

Zeolites have been regarded as one of the most important catalysts in petrochemical industry due to their excellent catalytic performance. However, the sole micropores in zeolites severely limit their applications in oil refining and natural gas conversion. To solve the problem, mesoporous zeolites have been prepared by introducing mesopores into the zeolite crystals in recent years, and thus have the advantages of both mesostructured materials (fast diffusion and accessible for bulky molecules) and microporous zeolite crystals (strong acidity and high hydrothermal stability). In this review, after giving a brief introduction to preparation, structure, and characterization of mesoporous zeolites, we systematically summarize catalytic applications of these mesoporous zeolites as efficient catalysts in oil refining and natural gas conversion including catalytic cracking of heavy oil, alkylation, isomerization, hydrogenation, hydrodesulfurization, methane dehydroaromatization, methanol dehydration to dimethyl ether, methanol to olefins, and methanol to hydrocarbons.

Keywords

mesoporous zeolite / catalysis / oil refining / natural gas conversion

Cite this article

Download citation ▾
Jie ZHU, Xiangju MENG, Fengshou XIAO. Mesoporous zeolites as efficient catalysts for oil refining and natural gas conversion. Front Chem Sci Eng, 2013, 7(2): 233‒248 https://doi.org/10.1007/s11705-013-1329-2

References

[1]
Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis. Chemical Reviews, 1997, 97(6): 2373-2420
CrossRef Google scholar
[2]
Davis M E. Ordered porous materials for emerging applications. Nature, 2002, 417(6891): 813-821
CrossRef Google scholar
[3]
Cundy C S, Cox P A. The hydrothermal synthesis of zeolites: History and development from the earliest days to the present time. Chemical Reviews, 2003, 103(3): 663-702
CrossRef Google scholar
[4]
Hartmann M. Hierarchical zeolites: A proven strategy to combine shape selectivity with efficient mass transport. Angewandte Chemie International Edition, 2004, 43(44): 5880-5882
CrossRef Google scholar
[5]
Perez-Ramirez J, Kapteijn F, Groen J C, Domenech A, Mul G, Moulijn J A. Steam-activated FeMFI zeolites. Evolution of iron species and activity in direct N2O decomposition. Journal of Catalysis, 2003, 214(1): 33-45
CrossRef Google scholar
[6]
Kresge C T, Leonowicz M E, Roth W J, Vartuli J C, Beck J S. Ordered mesoporous molecular-sieves synthesized by a liquid-crystal template mechanism. Nature, 1992, 359(6397): 710-712
CrossRef Google scholar
[7]
Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W, McCullen S B, Higgins J B, Schlenker J L. A new family of mesoporous molecular-sieves prepared with liquid-crystal templates. Journal of the American Chemical Society, 1992, 114(27): 10834-10843
CrossRef Google scholar
[8]
Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science, 1998, 279(5350): 548-552
CrossRef Google scholar
[9]
Zhao D Y, Huo Q S, Feng J L, Chmelka B F, Stucky G D. Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. Journal of the American Chemical Society, 1998, 120(24): 6024-6036
CrossRef Google scholar
[10]
Davis M E. Introduction to large-pore molecular-sieves. Catalysis Today, 1994, 19(1): 1-5
CrossRef Google scholar
[11]
Liu Y, Zhang W Z, Pinnavaia T J. Steam-stable aluminosilicate mesostructures assembled from zeolite type Y seeds. Journal of the American Chemical Society, 2000, 122(36): 8791-8792
CrossRef Google scholar
[12]
Liu Y, Zhang W Z, Pinnavaia T J. Steam-stable MSU-S aluminosilicate mesostructures assembled from zeolite ZSM-5 and zeolite beta seeds. Angewandte Chemie International Edition, 2001, 40(7): 1255-1258
CrossRef Google scholar
[13]
Zhang Z T, Han Y, Zhu L, Wang R W, Yu Y, Qiu S L, Zhao D Y, Xiao F S. Strongly acidic and high-temperature hydrothermally stable mesoporous aluminosilicates with ordered hexagonal structure. Angewandte Chemie International Edition, 2001, 40(7): 1258-1262
CrossRef Google scholar
[14]
Xiao F S, Han Y, Yu Y, Meng X J, Yang M, Wu S. Hydrothermally stable ordered mesoporous titanosilicates with highly active catalytic sites. Journal of the American Chemical Society, 2002, 124(6): 888-889
CrossRef Google scholar
[15]
Han Y, Li D F, Zhao L, Song J W, Yang X Y, Li N, Di Y, Li C J, Wu S, Xu X Z, Meng X J, Lin K F, Xiao F S. High-temperature generalized synthesis of stable ordered mesoporous silica-based materials by using fluorocarbon-hydrocarbon surfactant mixtures. Angewandte Chemie International Edition, 2003, 42(31): 3633-3637
CrossRef Google scholar
[16]
Li D F, Han Y, Song J W, Zhao L, Xu X Z, Di Y, Xiao F S. High-temperature synthesis of stable ordered mesoporous silica materials by using fluorocarbon-hydrocarbon surfactant mixtures. Chemistry (Weinheim an der Bergstrasse, Germany), 2004, 10(23): 5911-5922
CrossRef Google scholar
[17]
Tao Y S, Kanoh H, Abrams L, Kaneko K. Mesopore-modified zeolites: Preparation, characterization, and applications. Chemical Reviews, 2006, 106(3): 896-910
CrossRef Google scholar
[18]
Xia Y D, Mokaya R. Are mesoporous silicas and aluminosilicas assembled from zeolite seeds inherently hydrothermally stable? Comparative evaluation of MCM-48 materials assembled from zeolite seeds. Journal of Materials Chemistry, 2004, 14(23): 3427-3435
CrossRef Google scholar
[19]
Tosheva L, Valtchev V P. Nanozeolites: Synthesis, crystallization mechanism, and applications. Chemistry of Materials, 2005, 17(10): 2494-2513
CrossRef Google scholar
[20]
Schoeman B J, Sterte J, Otterstedt J E. Colloid Zeolite Suspensions. Zeolites, 1994, 14(2): 110-116
CrossRef Google scholar
[21]
Freyhardt C C, Tsapatsis M, Lobo R F, Balkus K J Jr, Davis M E. A high-silica zeolite with a 14-tetrahedral-atom pore opening. Nature, 1996, 381(6580): 295-298
CrossRef Google scholar
[22]
Davis M E, Saldarriaga C, Montes C, Garces J, Crowder C. A molecular-sieve with 18-membered rings. Nature, 1988, 331(6158): 698-699
CrossRef Google scholar
[23]
Corma A, Diaz-Cabanas M J, Jorda J L, Martinez C, Moliner M. High-throughput synthesis and catalytic properties of a molecular sieve with 18- and 10-member rings. Nature, 2006, 443(7113): 842-845
CrossRef Google scholar
[24]
Huo Q H, Xu R R, Li S G, Ma Z G, Thomas J M, Jones R H, Chippindale A M. Synthesis and characterization of a novel extra large ring of aluminophosphate JDF-20. Journal of the Chemical Society. Chemical Communications, 1992, (12): 875-876
CrossRef Google scholar
[25]
Sun J L, Bonneau C, Cantin A, Corma A, Diaz-Cabanas M J, Moliner M, Zhang D L, Li M R, Zou X D. The ITQ-37 mesoporous chiral zeolite. Nature, 2009, 458(7242): 1154-1157
CrossRef Google scholar
[26]
Jiang J X, Jorda J L, Yu J H, Baumes L A, Mugnaioli E, Diaz-Cabanas M J, Kolb U, Corma A. Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43. Science, 2011, 333(6046): 1131-1134
CrossRef Google scholar
[27]
Meng X J, Nawaz F, Xiao F S. Templating route for synthesizing mesoporous zeolites with improved catalytic properties. Nano Today, 2009, 4(4): 292-301
CrossRef Google scholar
[28]
van Donk S, Janssen A H, Bitter J H, de Jong K P. Generation, characterization, and impact of mesopores in zeolite catalysts. Catalysis Reviews. Science and Engineering, 2003, 45(2): 297-319
CrossRef Google scholar
[29]
Perez-Ramirez J, Christensen C H, Egeblad K, Christensen C H, Groen J C. Hierarchical zeolites: enhanced utilisation of microporous crystals in catalysis by advances in materials design. Chemical Society Reviews, 2008, 37(11): 2530-2542
CrossRef Google scholar
[30]
Egeblad K, Christensen C H, Kustova M, Christensen C H. Templating mesoporous zeolites. Chemistry of Materials, 2008, 20(3): 946-960
CrossRef Google scholar
[31]
Chal R, Gerardin C, Bulut M, van Donk S. Overview and industrial assessment of synthesis strategies towards zeolites with mesopores. ChemCatChem, 2011, 3(1): 67-81
CrossRef Google scholar
[32]
Holm M S, Taarning E, Egeblad K, Christensen C H. Catalysis with hierarchical zeolites. Catalysis Today, 2011, 168(1): 3-16
CrossRef Google scholar
[33]
Lynch J, Raatz F, Dufresne P. Characterization of the textural properties of dealuminated HY forms. Zeolites, 1987, 7(4): 333-340
CrossRef Google scholar
[34]
Triantafillidis C S, Vlessidis A G, Evmiridis N P. Dealuminated H-Y zeolites: Influence of the degree and the type of dealumination method on the structural and acidic characteristics of H-Y zeolites. Industrial & Engineering Chemistry Research, 2000, 39(2): 307-319
CrossRef Google scholar
[35]
Groen J C, Bach T, Ziese U, Donk A M P V, de Jong K P, Moulijn J A, Perez-Ramirez J. Creation of hollow zeolite architectures by controlled desilication of Al-zoned ZSM-5 crystals. Journal of the American Chemical Society, 2005, 127(31): 10792-10793
CrossRef Google scholar
[36]
Jacobsen C J H, Madsen C, Houzvicka J, Schmidt I, Carlsson A. Mesoporous zeolite single crystals. Journal of the American Chemical Society, 2000, 122(29): 7116-7117
CrossRef Google scholar
[37]
Kustova M, Hasselriis P, Christensen C H. Mesoporous MEL-type zeolite single crystal catalysts. Catalysis Letters, 2004, 96(3-4): 205-211
CrossRef Google scholar
[38]
Wei X, Smirniotis P G. Synthesis and characterization of mesoporous ZSM-12 by using carbon particles. Microporous and Mesoporous Materials, 2006, 89(1-3): 170-178
CrossRef Google scholar
[39]
Schmidt I, Boisen A, Gustavsson E, Stahl K, Pehrson S, Dahl S, Carlsson A, Jacobsen C J H. Carbon nanotube templated growth of mesoporous zeolite single crystals. Chemistry of Materials, 2001, 13(12): 4416-4418
CrossRef Google scholar
[40]
Boisen A, Schmidt I, Carlsson A, Dahl S, Brorson M, Jacobsen C J H. TEM stereo-imaging of mesoporous zeolite single crystals. Chemical Communications, 2003, (8): 958-959
CrossRef Google scholar
[41]
Janssen A H, Schmidt I, Jacobsen C J H, Koster A J, de Jong K P. Exploratory study of mesopore templating with carbon during zeolite synthesis. Microporous and Mesoporous Materials, 2003, 65(1): 59-75
CrossRef Google scholar
[42]
Tao Y S, Kanoh H, Kaneko K. ZSM-5 monolith of uniform mesoporous channels. Journal of the American Chemical Society, 2003, 125(20): 6044-6045
CrossRef Google scholar
[43]
Tao Y S, Kanoh H, Kaneko K. Uniform mesopore-donated zeolite Y using carbon aerogel templating. Journal of Physical Chemistry B, 2003, 107(40): 10974-10976
CrossRef Google scholar
[44]
Tao Y S, Kanoh H, Kaneko K. Synthesis of mesoporous zeolite a by resorcinol-formaldehyde aerogel templating. Langmuir, 2005, 21(2): 504-507
CrossRef Google scholar
[45]
Tao Y S, Hattori Y, Matumoto A, Kaneko K. Comparative study on pore structures of mesoporous ZSM-5 from resorcinol-formaldehyde aerogel and carbon aerogel templating. Journal of Physical Chemistry B, 2005, 109(1): 194-199
CrossRef Google scholar
[46]
Cho S I, Choi S D, Kim J H, Kim G J. Synthesis of zsm-5 films and monoliths with bimodal micro/mesoscopic structures. Advanced Functional Materials, 2004, 14(1): 49-54
CrossRef Google scholar
[47]
Yang Z X, Xia Y D, Mokya R. Zeolite ZSM-5 with unique supermicropores synthesized using mesoporous carbon as a template. Advanced Materials, 2004, 16(8): 727-732
CrossRef Google scholar
[48]
Sakhtivel A, Huang S J, Chen W H, Lan Z H, Chen K H, Kim T W, Ryoo R, Chiang A S T, Liu S B. Replication of mesoporous aluminosilicate molecular sieves (RMMs) with zeolite framework from mesoporous carbons (CMKs). Chemistry of Materials, 2004, 16(16): 3168-3175
CrossRef Google scholar
[49]
Fan W, Synder M A, Kumar S, Lee P S, Yoo W C, McCormick A V, Penn R L, Stein A, Tsapatsis M. Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nature Materials, 2008, 7(12): 984-991
CrossRef Google scholar
[50]
Lee P S, Zhang X Y, Stoeger J A, Malek A, Fan W, Kumar S, Yoo W C, Al Hashimi S, Penn R L, Stein A, Tsapatsis M. Sub-40 nm zeolite suspensions via disassembly of three-dimensionally ordered mesoporous-imprinted silicalite-1. Journal of the American Chemical Society, 2011, 133(3): 493-502
CrossRef Google scholar
[51]
Chen H Y, Wydra J, Zhang X Y, Lee P S, Wang Z P, Fan W, Tsapatsis M. Hydrothermal synthesis of zeolites with three-dimensionally ordered mesoporous-imprinted structure. Journal of the American Chemical Society, 2011, 133(32): 12390-12393Fan WTsapatsis M
CrossRef Google scholar
[52]
Li H C, Sakamoto Y, Liu Z, Ohsuna T, Terasaki O, Thommes M, Che S N. Mesoporous silicalite-1 zeolite crystals with unique pore shapes analogous to the morphology. Microporous and Mesoporous Materials, 2007, 106(1-3): 174-179
CrossRef Google scholar
[53]
Cho H S, Ryoo R. Synthesis of ordered mesoporous MFI zeolite using CMK carbon templates. Microporous and Mesoporous Materials, 2012, 151: 107-112Ryoo R
CrossRef Google scholar
[54]
Zhu H, Liu Z, Wang Y, Kong D, Yuan X, Xie Z. Nanosized CaCO3 as hard template for creation of intracrystal pores within silicalite-1 crystal. Chemistry of Materials, 2008, 20(3): 1134-1139
CrossRef Google scholar
[55]
Xiao F S, Wang L F, Yin C Y, Lin K F, Di Y, Li J X, Xu R R, Su D S, Schlogl R, Yokoi T, Tatsumi T. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationic polymers. Angewandte Chemie International Edition, 2006, 45(19): 3090-3093
CrossRef Google scholar
[56]
Choi M, Cho H S, Srivastava R, Venkatesan C, Choi D H, Ryoo R. Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nature Materials, 2006, 5(9): 718-723
CrossRef Google scholar
[57]
Choi M, Srivastava R, Ryoo R. Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks. Chemical Communications, 2006, (42): 4380-4382
CrossRef Google scholar
[58]
Srivastava R, Choi M, Ryoo R. Mesoporous materials with zeolite framework: remarkable effect of the hierarchical structure for retardation of catalyst deactivation. Chemical Communications, 2006, (43): 4489-4491
CrossRef Google scholar
[59]
Wang H, Pinnavaia T J. MFI zeolite with small and uniform intracrystal mesopores. Angewandte Chemie International Edition, 2006, 45(45): 7603-7606
CrossRef Google scholar
[60]
Zhu H B, Liu Z C, Kong D J, Wang Y D, Xie Z K. Synthesis and catalytic performances of mesoporous zeolites templated by polyvinyl butyral gel as the mesopore directing agent. Journal of Physical Chemistry C, 2008, 112(44): 17257-17264
CrossRef Google scholar
[61]
Fu W Q, Zhang L, Tang T D, Ke Q P, Wang S, Hu J B, Fang G Y, Li J X, Xiao F S. Extraordinarily high activity in the hydrodesulfurization of 4,6-dimethyldibenzothiophene over Pd supported on mesoporous zeolite Y. Journal of the American Chemical Society, 2011, 133(39): 15346-15349
CrossRef Google scholar
[62]
Zhu Y, Hua Z L, Zhou J, Wang L J, Zhao J J, Gong Y, Wu W, Ruan M L, Shi J L. Hierarchical mesoporous zeolites: Direct self-Assembly synthesis in a conventional surfactant solution by kinetic control over the zeolite seed formation. Chemistry (Weinheim an der Bergstrasse, Germany), 2011, 17(51): 14618-14627
CrossRef Google scholar
[63]
Zhou J, Hua Z L, Liu Z C, Wu W, Zhu Y, Shi J L. Direct synthetic strategy of mesoporous ZSM-5 zeolites by using conventional block copolymer templates and the improved catalytic properties. Acs Catalysis, 2011, 1(4): 287-291
CrossRef Google scholar
[64]
Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature, 2009, 461(7261): 246-250
CrossRef Google scholar
[65]
Na K, Choi M, Park W, Sakamoto Y, Terasaki O, Ryoo R. Pillared MFI zeolite nanosheets of a single-unit-cell thickness. Journal of the American Chemical Society, 2010, 132(12): 4169-4177
CrossRef Google scholar
[66]
Na K, Jo C, Kim J, Cho K, Jung J, Seo Y, Messinger R J, Chmelka B F, Ryoo R. Directing zeolite structures into hierarchically nanoporous architectures. Science, 2011, 333(6040): 328-332
CrossRef Google scholar
[67]
Liu F J, Willhammar T, Wang L, Zhu L F, Sun Q, Meng X J, Carrillo-Cabrera W, Zou X D, Xiao F S. ZSM-5 zeolite single crystals with b-axis-aligned mesoporous channels as an efficient catalyst for conversion of bulky organic molecules. Journal of the American Chemical Society, 2012, 134(10): 4557-4560
CrossRef Google scholar
[68]
Kung H H, Williams B A, Babitz S M, Miller J T, Haag W O, Snurr R Q. Enhanced hydrocarbon cracking activity of Y zeolites. Topics in Catalysis, 2000, 10(1-2): 59-64
CrossRef Google scholar
[69]
Haag W O, Lago R M, Weisz P B. Transport and reactivity of hydrocarbon molecules in a shape-selective zeolite. Faraday Discussions, 1981, 72: 317-330
CrossRef Google scholar
[70]
Garcia-Martinez J, Johnson M, Valla J, Li K H, Ying J Y. Mesostructured zeolite Y-high hydrothermal stability and superior FCC catalytic performance. Catalysis Science & Technology, 2012, 2(5): 987-994
CrossRef Google scholar
[71]
Tan Q F, Fan Y, Liu H Y, Song T C, Shi G, Shen B J, Bao X. Bimodal micro-mesoporous aluminosilicates for heavy oil cracking: Porosity tuning and catalytic properties. AIChE Journal. American Institute of Chemical Engineers, 2008, 54(7): 1850-1859Bao X J
CrossRef Google scholar
[72]
Siddiqui M A B, Aitani A M, Saeed M R, Al-Yassir N, Al-Khattaf S. Enhancing propylene production from catalytic cracking of Arabian Light VGO over novel zeolites as FCC catalyst additives. Fuel, 2011, 90(2): 459-466
CrossRef Google scholar
[73]
Park D H, Kim S S, Wang H, Pinnavaia T J, Papapetrou M C, Lappas A A, Triantafyllidis K S. Selective petroleum refining over a zeolite catalyst with small intracrystal mesopores. Angewandte Chemie International Edition, 2009, 48(41): 7645-7648
CrossRef Google scholar
[74]
Wang L F, Yin C Y, Shan Z C, Liu S, Du Y C, Xiao F S. Bread-template synthesis of hierarchical mesoporous ZSM-5 zeolite with hydrothermally stable mesoporosity. Colloids and Surfaces A, 2009, 340(1-3): 126-130
CrossRef Google scholar
[75]
Lei Q, Zhao T B, Li F Y, Zhang L L, Wang Y. Catalytic cracking of large molecules over hierarchical zeolites. Chemical Communications (Cambridge), 2006, (16): 1769-1771
CrossRef Google scholar
[76]
Christensen C H, Schmidt I, Christensen C H. Improved performance of mesoporous zeolite single crystals in catalytic cracking and isomerization of n-hexadecane. Catalysis Communications, 2004, 5(9): 543-546
CrossRef Google scholar
[77]
Kustova M, Egeblad K, Christensen C H, Kustov A L, Christensen C H. Hierarchical zeolites: Progress on synthesis and characterization of mesoporous zeolite single crystal catalysts. Studies in Surface Science and Catalysis, 2007, 170: 267-275
CrossRef Google scholar
[78]
Kustova M Y, Hasselriis P, Christensen C H. Mesoporous MEL-type zeolite single crystal catalysts. Catalysis Letters, 2004, 96(3-4): 205-211
CrossRef Google scholar
[79]
Shetti V N, Kim J, Srivastava R, Choi M, Ryoo R. Assessment of the mesopore wall catalytic activities of MFI zeolite with mesoporous/microporous hierarchical structures. Journal of Catalysis, 2008, 254(2): 296-303
CrossRef Google scholar
[80]
Christensen C H, Johannsen K, Schmidt I, Christensen C H. Catalytic benzene alkylation over mesoporous zeolite single crystals: Improving activity and selectivity with a new family of porous materials. Journal of the American Chemical Society, 2003, 125(44): 13370-13371
CrossRef Google scholar
[81]
Christensen C H, Johannsen K, Toernqvist E, Schmidt I, Topsoe H, Christensen C H. Mesoporous zeolite single crystal catalysts: Diffusion and catalysis in hierarchical zeolites. Catalysis Today, 2007, 128(1-2): 117-122
CrossRef Google scholar
[82]
Perez-Ramirez J, Verboekend D, Bonilla A, Abello S. Zeolite Catalysts with tunable hierarchy factor by pore-growth moderators. Advanced Functional Materials, 2009, 19(24): 3972-3979
CrossRef Google scholar
[83]
van Iaak A N C, Gosselink R W, Sagala S L, Meeldijk J D, de Jongh P E, de Jong K P. Alkaline treatment on commercially available aluminum rich mordenite. Applied Catalysis A, General, 2010, 382(1): 65-72
CrossRef Google scholar
[84]
van Laak A N C, Sagala S L, Zecevic J, Friedrich H, de Jongh P E, de Jong K P. Mesoporous mordenites obtained by sequential acid and alkaline treatments—Catalysts for cumene production with enhanced accessibility. Journal of Catalysis, 2010, 276(1): 170-180
CrossRef Google scholar
[85]
Pellet R J, Casey D G, Huang H M, Kessler R V, Kuhlman E J, Oyoung C L, Sawicki R A, Ugolini J R. Isomerization of n-butene to isobutene by ferrierite and modified ferrierite catalysts. Journal of Catalysis, 1995, 157(2): 423-435
CrossRef Google scholar
[86]
Khitev Y P, Kolyagin Y G, Ivanova I I, Ponomareva O A, Thibault-Starzyk F, Gilson J P, Fernandez C, Fajula F. Synthesis and catalytic properties of hierarchical micro/mesoporous materials based on FER zeolite. Microporous and Mesoporous Materials, 2011, 146(1-3): 201-207
CrossRef Google scholar
[87]
Matias P, Couto C S, Graca I, Lopes J M, Carvalho A P, Ribeiro F R, Guisnet M. Desilication of a TON zeolite with NaOH: Influence on porosity, acidity and catalytic properties. Applied Catalysis A, General, 2011, 399(1-2): 100-109
CrossRef Google scholar
[88]
van Donk S, Broersma A, Gijzeman O L J, van Bokhoven J A, Bitter J H, de Jong K P. Combined diffusion, adsorption, and reaction studies of n-hexane hydroisomerization over Pt/H-mordenite in an oscillating microbalance. Journal of Catalysis, 2001, 204(2): 272-280
CrossRef Google scholar
[89]
Chao P H, Tsai S T, Chang S L, Wang I, Tsai T C. Hexane isomerization over hierarchical Pt/MFI zeolite. Topics in Catalysis, 2010, 53(1-2): 231-237
CrossRef Google scholar
[90]
Modhera B K, Chakraborty M, Bajaj H C, Parikh P A. Influences of mesoporosity generation in ZSM-5 and zeolite beta on catalytic performance during n-hexane isomerization. Catalysis Letters, 2011, 141(8): 1182-1190
CrossRef Google scholar
[91]
Moushey D L, Smirniotis P G. n-Heptane hydroisomerization over mesoporous zeolites made by utilizing carbon particles as the template for mesoporosity. Catalysis Letters, 2009, 129(1-2): 20-25
CrossRef Google scholar
[92]
Verboekend D, Thomas K, Milina M, Mitchell S, Perez-Ramirez J, Gilson J P. Towards more efficient monodimensional zeolite catalysts: n-Alkane hydro-isomerisation on hierarchical ZSM-22. Catalysis Science & Technology, 2011, 1(8): 1331-1335
CrossRef Google scholar
[93]
Fan Y, Xiao H, Shi G, Liu H Y, Bao X J. Alkylphosphonic acid- and small amine-templated synthesis of hierarchical silicoaluminophosphate molecular sieves with high isomerization selectivity to di-branched paraffins. Journal of Catalysis, 2012, 285(1): 251-259
CrossRef Google scholar
[94]
Qin B, Zhang X W, Zhang Z Z, Ling F X, Sun W F. Synthesis, characterization and catalytic properties of Y-beta zeolite composites. Petroleum Science, 2011, 8(2): 224-228
CrossRef Google scholar
[95]
Chica A, Diaz U, Fornes V, Corma A. Changing the hydroisomerization to hydrocracking ratio of long chain alkanes by varying the level of delamination in zeolitic (ITQ-6) materials. Catalysis Today, 2009, 147(3-4): 179-185
CrossRef Google scholar
[96]
Fernandez C, Stan I, Gilson J P, Thomas K, Vicente A, Bonilla A, Perez-Ramirez J. Hierarchical ZSM-5 zeolites in shape-selective xylene isomerization: Role of mesoporosity and acid site speciation. Chemistry (Weinheim an der Bergstrasse, Germany), 2010, 16(21): 6224-6233
CrossRef Google scholar
[97]
Mihalyi R M, Kollar M, Kiraly P, Karoly Z, Mavrodinova V. Effect of extra-framework Al formed by successive steaming and acid leaching of zeolite MCM-22 on its structure and catalytic performance. Applied Catalysis A, General, 2012, 417: 76-86
CrossRef Google scholar
[98]
Tang T D, Yin C Y, Wang L F, Ji Y Y, Xiao F S. Superior performance in deep saturation of bulky aromatic pyrene over acidic mesoporous beta zeolite-supported palladium catalyst. Journal of Catalysis, 2007, 249(1): 111-115
CrossRef Google scholar
[99]
Tang T D, Yin C Y, Wang L F, Ji Y Y, Xiao F S. Good sulfur tolerance of a mesoporous beta zeolite-supported palladium catalyst in the deep hydrogenation of aromatics. Journal of Catalysis, 2008, 257(1): 125-133
CrossRef Google scholar
[100]
Sun Y Y, Prins R. Hydrodesulfurization of 4,6-dimethyldibenzothiophene over noble metals supported on mesoporous zeolites. Angewandte Chemie International Edition, 2008, 47(44): 8478-8481
CrossRef Google scholar
[101]
Zheng J J, Zeng Q H, Zhang Y Y, Wang Y, Ma J H, Zhang X W, Sun W F, Li R F. Hierarchical porous zeolite composite with a core-shell structure fabricated using beta-zeolite crystals as nutrients as well as cores. Chemistry of Materials, 2010, 22(22): 6065-6074
CrossRef Google scholar
[102]
Xu Y D, Lin L W. Recent advances in methane dehydro-aromatization over transition metal ion-modified zeolite catalysts under non-oxidative conditions. Applied Catalysis A, General, 1999, 188(1-2): 53-67
CrossRef Google scholar
[103]
Su L L, Liu L, Zhuang J Q, Wang H X, Li Y G, Shen W J, Xu Y D, Bao X H. Creating mesopores in ZSM-5 zeolite by alkali treatment: A new way to enhance the catalytic performance of methane dehydroaromatization on Mo/HZSM-5 catalysts. Catalysis Letters, 2003, 91(3-4): 155-167
CrossRef Google scholar
[104]
Chu N B, Yang J H, Li C Y, Cui J Y, Zhao Q Y, Yin X Y, Lu J M, Wang J Q. An unusual hierarchical ZSM-5 microsphere with good catalytic performance in methane dehydroaromatization. Microporous and Mesoporous Materials, 2009, 118(1-3): 169-175
CrossRef Google scholar
[105]
Martinez A, Peris E, Derewinski M, Burkat-Dulak A. Improvement of catalyst stability during methane dehydroaromatization (MDA) on Mo/HZSM-5 comprising intracrystalline mesopores. Catalysis Today, 2011, 169(1): 75-84
CrossRef Google scholar
[106]
Liu H, Yang S, Hu J, Shang F P, Li Z F, Xu C, Guan J Q, Kan Q B. A comparison study of mesoporous Mo/H-ZSM-5 and catalysts in methane non-oxidative aromatization. Fuel Processing Technology, 2012, 96: 195-202
CrossRef Google scholar
[107]
Chu N B, Wang J Q, Zhang Y, Yang J H, Lu J M, Yin D H. Nestlike hollow hierarchical MCM-22 microspheres: synthesis and exceptional catalytic properties. Chemistry of Materials, 2010, 22(9): 2757-2763
CrossRef Google scholar
[108]
Tang Q, Xu H, Zheng Y Y, Wang J F, Li H S, Zhang J. Zhang Jun. Catalytic dehydration of methanol to dimethyl ether over micro-mesoporous ZSM-5/MCM-41 composite molecular sieves. Applied Catalysis A, General, 2012, 413: 36-42
CrossRef Google scholar
[109]
Cho K, Cho H S, de Menorval L C, Ryoo R. Generation of mesoporosity in LTA zeolites by organosilane surfactant for rapid molecular transport in catalytic application. Chemistry of Materials, 2009, 21(23): 5664-5673
CrossRef Google scholar
[110]
Mei C S, Wen P Y, Liu Z C, Liu H X, Wang Y D, Yang W M, Xie Z K, Hua W M, Gao Z. Selective production of propylene from methanol: Mesoporosity development in high silica HZSM-5. Journal of Catalysis, 2008, 258(1): 243-249
CrossRef Google scholar
[111]
Zhu J, Cui Y, Wang Y, Wei F. Direct synthesis of hierarchical zeolite from a natural layered material. Chemical Communications, 2009, (22): 3282-3284
CrossRef Google scholar
[112]
Wang P F, Lv A L, Hu J, Xu J A, Lu G Z. In situ synthesis of SAPO-34 grown onto fully calcined kaolin microspheres and its catalytic properties for the MTO reaction. Industrial & Engineering Chemistry Research, 2011, 50(17): 9989-9997
CrossRef Google scholar
[113]
Olsbye U, Svelle S, Bjorgen M, Beato P, Janssens T V W, Joensen F, Bordiga S, Lillerud K P. Conversion of methanol to hydrocarbons: How zeolite cavity and pore size controls product selectivity. Angewandte Chemie International Edition, 2012, 51(24): 5810-5831
CrossRef Google scholar
[114]
Lietz G, Schnabel K H, Peuker C, Gross T, Storek W, Volter J. Modifications of H-ZSM-5 catalysts by NaOH treatment. Journal of Catalysis, 1994, 148(2): 562-568
CrossRef Google scholar
[115]
Bjorgen M, Joensen F, Holm M S, Olsbye U, Lillerud K P, Svelle S. Methanol to gasoline over zeolite H-ZSM-5: Improved catalyst performance by treatment with NaOH. Applied Catalysis A, General, 2008, 345(1): 43-50
CrossRef Google scholar
[116]
Kim J, Choi M, Ryoo R. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process. Journal of Catalysis, 2010, 269(1): 219-228
CrossRef Google scholar
[117]
Ni Y M, Sun A M, Wu X L, Hai G L, Hu J L, Li T, Li G X. Preparation of hierarchical mesoporous Zn/HZSM-5 catalyst and its application in MTG reaction. Journal of Natural Gas Chemistry, 2011, 20(3): 237-242
CrossRef Google scholar
[118]
Rownaghi A A, Hedlund J. Methanol to gasoline-range hydrocarbons: Influence of nanocrystal size and mesoporosity on catalytic performance and product distribution of ZSM-5. Industrial & Engineering Chemistry Research, 2011, 50(21): 11872-11878
CrossRef Google scholar
[119]
Vennestrom P N R, Grill M, Kustova M, Egeblad K, Lundegaard L F, Joensen F, Christensen C H, Beato P. Hierarchical ZSM-5 prepared by guanidinium base treatment: Understanding microstructural characteristics and impact on MTG and NH3-SCR catalytic reactions. Catalysis Today, 2011, 168(1): 71-79
CrossRef Google scholar
[120]
Rownaghi A A, Rezaei F, Hedlund J. Rezaei, Hedlund J. Uniform mesoporous ZSM-5 single crystals catalyst with high resistance to coke formation for methanol deoxygenation. Microporous and Mesoporous Materials, 2012, 151: 26-33
CrossRef Google scholar
[121]
Kima K, Ryoo R, Jang H D, Choi M. Spatial distribution, strength, and dealumination behavior of acid sites in nanocrystalline MFI zeolites and their catalytic consequences. Journal of Catalysis, 2012, 288: 115-123
CrossRef Google scholar

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(862 KB)

Accesses

Citations

Detail

Sections
Recommended

/