Deactivation and regeneration of TS-1/SiO2 catalyst for epoxidation of propylene with hydrogen peroxide in a fixed-bed reactor

Hainan SHI, Yaquan WANG, Guoqiang WU, Wenping FENG, Yi Lin, Teng ZHANG, Xing JIN, Shuhai WANG, Xiaoxue WU, Pengxu YAO

PDF(197 KB)
PDF(197 KB)
Front. Chem. Sci. Eng. ›› 2013, Vol. 7 ›› Issue (2) : 202-209. DOI: 10.1007/s11705-013-1328-3
RESEARCH ARTICLE
RESEARCH ARTICLE

Deactivation and regeneration of TS-1/SiO2 catalyst for epoxidation of propylene with hydrogen peroxide in a fixed-bed reactor

Author information +
History +

Abstract

TS-1/SiO2 catalyst for the epoxidation of propylene with hydrogen peroxide in a fixed-bed reactor has been investigated. The catalyst activity decreases gradually with the online reaction time, but the selectivity of propylene epoxide is kept at about 93%. The fresh, deactivated and regenerated catalysts were characterized with X-ray diffraction, Fourier transform infrared spectroscopy, ultra-violet-visible diffuse reflectance, Brunner-Emmett-Teller method and thermogravimetric analysis, and the deactivated catalyst was regenerated with H2O2/methanol solution. Compared with the fresh catalyst, both the framework structure and the content of titanium in the framework of the deactivated and regenerated TS-1/SiO2 catalysts were not changed. The major reason of the catalyst deactivation was the blockage of the channels of the catalyst by bulky organic by-products, which covered the active centers of titanium in TS-1. The deposited materials on the deactivated TS-1/SiO2 catalyst could be removed by treatment with hydrogen peroxide/methanol solution or pure methanol; the higher the treatment temperature and the higher the concentration of H2O2 in methanol, the higher the extent of the regeneration. The regeneration treatment did not influence the product selectivity in the propylene epoxidation.

Keywords

TS-1/SiO2, epoxidation of propylene, fixed-bed reactor, deactivation / regeneration

Cite this article

Download citation ▾
Hainan SHI, Yaquan WANG, Guoqiang WU, Wenping FENG, Yi Lin, Teng ZHANG, Xing JIN, Shuhai WANG, Xiaoxue WU, Pengxu YAO. Deactivation and regeneration of TS-1/SiO2 catalyst for epoxidation of propylene with hydrogen peroxide in a fixed-bed reactor. Front Chem Sci Eng, 2013, 7(2): 202‒209 https://doi.org/10.1007/s11705-013-1328-3

References

[1]
Kirk R O, Dempsey T J. Kirk-Othmer Encyclopedia of Chemical Technology. New York: Wiley, 1982, 19, 246–248
[2]
Zuo Y, Wang M L, Song W C, Wang X S, Guo X W. Characterization and catalytic performance of deactivated and regenerated TS1 extrudates in a pilot plant of propene epoxidation. Industrial & Engineering Chemistry Research, 2012, 51(32): 10586-10594
CrossRef Google scholar
[3]
Huang J H, Takei T, Ohashi H, Haruta M.Propene epoxidation with oxygen over gold clusters: Role of basic salts and hydroxides of alkalis. Applied Catalysis A: General, 2012, 435-436: 115-122
[4]
Wang R P, Guo X W, Wang X S, Hao J Q. Propylene epoxidation over silver supported on titanium silicalite zeolite. Catalysis Letters, 2003, 90(1-2): 57-67
CrossRef Google scholar
[5]
Taramasso M, Peregoand G, Notari B. U S. Patent, <patent>4410501</patent>, 1983-10-18
[6]
Taramasso M, Manara G, Fattore V, Notari B. U S. Patent, <patent>4666692</patent>, 1987-05-19
[7]
Martens J A, Buskens P, Jacobs P A, van der Pol A, van Hooff J H C, Ferrini C, Kouwenhoven H W, Kooyman P J, van Bekkum H. Hydroxylation of phenol with hydrogen peroxide on EUROTS-1 catalyst. Applied Catalysis A, General, 1993, 99(1): 71-84
CrossRef Google scholar
[8]
Clerici M G, Bellussi G, Romano U. Synthesis of propylene oxide from propylene and hydrogen peroxide catalyzed by titanium silicalite. Journal of Catalysis, 1991, 129(1): 159-167
CrossRef Google scholar
[9]
Tvaruzkova Z, Zilkova N. Incorporation of titanium into the framework sites of Na-zeolites using TiCl4: Catalytic activity in the ammoximation of cyclohexanone to cyclohexanone oxime. Applied Catalysis A, General, 1993, 103(1): L1-L4
CrossRef Google scholar
[10]
Clerici M G. Oxidation of saturated hydrocarbons with hydrogen peroxide, catalysed by titanium silicalite. Applied Catalysis, 1991, 68(1): 249-261
CrossRef Google scholar
[11]
Maspero F, Romano U. Oxidation of alcohols with H2O2 catalyzed by titanium silicalite-1. Journal of Catalysis, 1994, 146(2): 476-482
CrossRef Google scholar
[12]
Wang X S, Guo X W. Synthesis, characterization and catalytic properties of low cost titanium silicalite. Catalysis Today, 1999, 51(1): 177-186
CrossRef Google scholar
[13]
Li G, Wang X S, Yan H S, Liu Y H, Liu X W. Epoxidation of propylene using supported titanium silicalite catalysts. Applied Catalysis A, General, 2002, 236(1-2): 1-7
CrossRef Google scholar
[14]
Tullo A H, Short P L. Propylene oxide routes take off. Chemical and Engineering News, 2006, 84(41): 22-23
CrossRef Google scholar
[15]
Perego C, Carati A, Ingallina P, Mantegazza M A, Bellussi G. Production of titanium containing molecular sieves and their application in catalysis. Applied Catalysis A, General, 2001, 221(1-2): 63-72
CrossRef Google scholar
[16]
Thiel G F, Roland E. Propylene epoxidation with hydrogen peroxide and titanium silicalite catalyst: deactivation and regeneratiom of the catalyst. Journal of Molecular Catalysis A Chemical, 1998, 132(2-3): 281-292
CrossRef Google scholar
[17]
Yan H S, Wang X S, Liu J, Guo X W, Li G. Study on the TS-1 deactivation during propylene epoxidation. Acta Petrolei Sinica, 2002, 18(1): 46-51 (Petroleum Processing Section)
[18]
Chen J X, Mi Z T, Wu Y L, Li W, Li Z H. Deactivation of the titanium silicalite catalyst in propylene epoxidation. Journal of Fuel Chemistry and Technology, 2003, 31(1): 80-85
[19]
Crocco G L, Zajacek J G. U S. Patent, <patent>5741749</patent>, 1998-<month>04</month>-<day>21</day>
[20]
Catinat J P, Strebelle M. U S. Patent, <patent>6169050</patent>, 2001-<month>01</month>-<day>02</day>
[21]
Mantegazza M A, Balducci L, Rivetti F.U S. Patent, <patent>6403514</patent>, 2002-<month>06</month>-<day>11</day>
[22]
Grosch G H, Muller U, Walch A, Reiber N, Harder W. U S. Patent, <patent>6710002</patent>, 2004-<month>03</month>-<day>23</day>
[23]
Carroll K M, Morales E, Han Y Z.U S. Patent, <patent>5798313</patent>, 1998-08-25
[24]
Muller U, Teles J H, Wenzel A, Harder W, Rudolf P, Rehfinger A, Baler P, Reiber N. US Patent, <patent>6790969</patent>, 2004-<month>09</month>-<day>14</day>
[25]
Han H Z, Carrol K M.US Patent, <patent>6872679</patent>, 2005-<month>03</month>-<day>29</day>
[26]
Wang Q F, Li W, Chen J X, Wu Y L, Mi Z T. Deactivation and regeneration of titanium silicalite catalyst for epoxidation of propylene. Journal of Molecular Catalysis A Chemical, 2007, 273(1-2): 73-80
CrossRef Google scholar
[27]
Carroll K M, Morales E, Han Y Z.US Patent, <patent>5916835</patent>, 1999-<month>06</month>-<day>29</day>
[28]
Shaumont D. WO Patent, <patent>9901445</patent>, 1999-<month>01</month>-<day>14</day>
[29]
Chang T.EP Patent, <patent>1190770</patent>, 2002-<month>03</month>-<day>27</day>
[30]
Thiele G. US Patent, <patent>5620935</patent>, 1997-<month>04</month>-<day>15</day>
[31]
Gilbeau P. WO Patent, <patent>9818555</patent>, 1998-<month>05</month>-<day>07</day>
[32]
Mantegazza M A, Balducci L, Rivetti F.<patent>US Patent</patent>, <patent>6403514</patent>, 2002-<month>06</month>-<day>11</day>
[33]
Wu G Q, Wang Y Q, Wang L N, Feng W P, Shi H N, Lin Y, Zhang T, Jin X, Wang S H, Wu X X, Yao P X. Epoxidation of propylene with H2O2 catalyzed by supported TS-1 catalyst in a fixed-bed reactor: experiments and kinetics. Chemical Engineering Journal, 2013, 215-216: 306-314
CrossRef Google scholar
[34]
Li G, Wang X S, Yan H S, Chen Y Y, Su Q S. Effect of sodium ions on propylene epoxidation catalyzed by titanium silicalite. Applied Catalysis A, General, 2001, 218(1): 31-38
CrossRef Google scholar
[35]
Astorino E, Peri J B, Willey R J, Busca G. Spectroscopic characterization of silicalite-1 and titanium silicalite-1. Journal of Catalysis, 1995, 157(2): 482-500
CrossRef Google scholar
[36]
Armaroli T, Milella F, Notari B, Willey R J, Busca G. A spectroscopic study of amorphous and crystalline Ti-containing silicas and their surface acidity. Topics in Catalysis, 2001, 15(1): 63-71
CrossRef Google scholar
[37]
Capel-Sanchez M C, Campos-Martin J M, Fierro J L G. Impregnation treatments of TS-1 catalysts and their relevance in alkene epoxidation with hydrogen peroxide. Applied Catalysis A, General, 2003, 246(1): 69-77
CrossRef Google scholar
[38]
Sanz R, Serrano D P, Pizarro P, Moreno I. Hierarchical TS-1 zeolite synthesized from SiO2 TiO2 xerogels imprinted with silanized protozeolitic units. Chemical Engineering Journal, 2011, 171(3): 1428-1438
CrossRef Google scholar
[39]
Marra G L, Artioli G, Fitch A N, Milanesio M, Lamberti C. Orthorhombic to monoclinic phase transition in high-Ti-loaded TS-1: An attempt to locate Ti in the MFI framework by low temperature XRD. Microporous and Mesoporous Materials, 2000, 40(1-3): 85-94
CrossRef Google scholar
[40]
Reddy J S, Sivasanker S, Ratnasamy P. Hydroxylation of phenol over Ts-2, a titanium silicate molecular sieve. Journal of Molecular Catalysis, 1992, 71(3): 373-381
CrossRef Google scholar
[41]
Huybrechts D R C, Buskens P L, Jacobs P A. Physicochemical and catalytic properties of titanium silicalites. Journal of Molecular Catalysis, 1992, 71(1): 129-147
CrossRef Google scholar
[42]
Li G, Wang X S, Guo X W, Liu S, Zhao Q, Bao X H, Lin L W. Titanium species in titanium silicalite TS-1 prepared by hydrothermal method. Materials Chemistry and Physics, 2001, 71(2): 195-201
CrossRef Google scholar
[43]
Liu H, Lu G Z, Guo Y L, Guo Y, Wang J S. Deactivation and regeneration of TS-1/diatomite catalyst for hydroxylation of phenol in fixed-bed reactor. Chemical Engineering Journal, 2005, 108(3): 187-192
CrossRef Google scholar

Acknowledgments

This work has been supported by the Natural Science Foundation of China (Grant No. 21276183) and Program of Introducing Talents of Discipline to Universities (No. B06006).

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(197 KB)

Accesses

Citations

Detail

Sections
Recommended

/