Control of the agglomeration of crystals in the reactive crystallization of 5-(difluoromethoxy)-2-mercapto-1H-benzimidazole

Yongli WANG , Shuyuan MA , Xiaodong LÜ , Chuang XIE

Front. Chem. Sci. Eng. ›› 2012, Vol. 6 ›› Issue (4) : 423 -431.

PDF (442KB)
Front. Chem. Sci. Eng. ›› 2012, Vol. 6 ›› Issue (4) : 423 -431. DOI: 10.1007/s11705-012-1211-7
RESEARCH ARTICLE
RESEARCH ARTICLE

Control of the agglomeration of crystals in the reactive crystallization of 5-(difluoromethoxy)-2-mercapto-1H-benzimidazole

Author information +
History +
PDF (442KB)

Abstract

5-(Difluoromethoxy)-2-mercapto-1H-benzimidazole (DMB) was precipitated by adding acetic acid to the DMB sodium salt solution. The spherical agglomeration of DMB during the reactive crystallization in a batch crystallizer was monitored by real-time Particle Video Microscope (PVM). We found that the low feeding rate of acetic acid, high crystallization temperature, low agitation rate or adding seed crystal can facilitate the formation of spherical agglomerates. By using a simple model, the mean crystal agglomerate size of DMB thus predicted is generally in agreement with the experimental data. In addition, the crystallization process of DMB was optimized by a new control strategy of supersaturation to avoid disadvantages brought by agglomeration.

Keywords

5-(difluoromethoxy)-2-mercapto-1H-benzimidazole (DMB) / reactive crystallization / agglomeration / feeding rate / crystallization temperature / agitation rate

Cite this article

Download citation ▾
Yongli WANG, Shuyuan MA, Xiaodong LÜ, Chuang XIE. Control of the agglomeration of crystals in the reactive crystallization of 5-(difluoromethoxy)-2-mercapto-1H-benzimidazole. Front. Chem. Sci. Eng., 2012, 6(4): 423-431 DOI:10.1007/s11705-012-1211-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Rajic K K, Novovic D, Marinkovic V, Agbaba D. First-order UV-derivative spectrophotometry in the analysis of omeprazole and pantoprazole sodium salt and corresponding impurities. Journal of Pharmaceutical and Biomedical Analysis, 2003, 32(4–5): 1019–1027

[2]

Collier A P, Hounslow M J. Growth and aggregation rates for calcite and calcium oxalate monohydrate. AIChE Journal, 1999, 45(11): 2298–2305

[3]

Ilievski D. Development and application of a constant supersaturation, semi-batch crystalliser for investigating gibbsite agglomeration. Journal of Crystal Growth, 2001, 233(4): 846–862

[4]

Chen P C, Liu S M, Jang C J, Hwang R C, Yang Y L, Lee J S, Jang J S. Interpretation of gas-liquid reactive crystallization data using a size-independent agglomeration model. Journal of Crystal Growth, 2003, 257(3–4): 333–343

[5]

David R, Marchal P, Klein J P, Villermaux J. Crystallization and precipitation engineering. III. A discrete formulation of the agglomeration rate of crystals in a crystallization process. Chemical Engineering Science, 1991, 46(1): 205–213

[6]

Chang S M, Kim J M, Kim I H, Shin D M, Kim W S. Agglomeration control of L-ornithine asparate crystals in drowning-out crystallization. Industrial & Engineering Chemistry Research, 2006, 45(5): 1631–1635

[7]

Zauner R, Jones A G. Mixing effects on product particle characteristics from semi-batch crystal precipitation.Chemical Engineering Research and Design, 2000, 78(6): 894–902

[8]

Yu Z Q, Tan R B H, Chow P S. Effects of operating conditions on agglomeration and habit of paracetamol crystals in anti-solvent crystallization. Journal of Crystal Growth, 2005, 279(3–4): 477–488

[9]

Seyssiecq I, Veesler S, Boistelle R, Lamerant J M. Agglomeration of Gibbsite Al(OH)3 crystals in Bayer liquors. Influence of the process parameters. Chemical Engineering Science, 1998, 53(12): 2177–2185

[10]

Alander E M, Rasmuson A C. Mechanisms of crystal agglomeration of paracetamole in acetone-water mixtures. Industrial & Engineering Chemistry Research, 2005, 44(15): 5788–5794

[11]

Synowiec P, Jones A G, Ayazi Shamlou P. ShamLou P A. Crystal break-up in dilute turbulently agitated suspensions. Chemical Engineering Science, 1993, 48(20): 3485–3495

[12]

Sung M H, Choi I S, Kim J S, Kim W S. Agglomeration of yttrium oxalate particles produced by reaction precipitation in semi-batch reactor. Chemical Engineering Science, 2000, 55(12): 2173–2184

[13]

Ayazi ShamLou P. Titchener-Hooker N. Turbulent aggregation and breakup of particles in liquid in stirred vessel. Oxford: Butterworth-Heinemann Ltd, 1993, 1–25

[14]

Zauner R, Jones A G. Determination of nucleation, growth, agglomeration and disruption kinetics from experimental precipitation data: the calcium oxalate system. Chemical Engineering Science, 2000, 55(19): 4219–4232

[15]

Chin C J, Yiacoumi S, Tsouris C. Shear-induced flocculation of colloidal particles in stirred tanks. Journal of Colloid and Interface Science, 1998, 206(2): 532–545

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (442KB)

3012

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/