Control of the agglomeration of crystals in the reactive crystallization of 5-(difluoromethoxy)-2-mercapto-1
Yongli WANG, Shuyuan MA, Xiaodong LÜ, Chuang XIE
Control of the agglomeration of crystals in the reactive crystallization of 5-(difluoromethoxy)-2-mercapto-1
5-(Difluoromethoxy)-2-mercapto-1H-benzimidazole (DMB) was precipitated by adding acetic acid to the DMB sodium salt solution. The spherical agglomeration of DMB during the reactive crystallization in a batch crystallizer was monitored by real-time Particle Video Microscope (PVM). We found that the low feeding rate of acetic acid, high crystallization temperature, low agitation rate or adding seed crystal can facilitate the formation of spherical agglomerates. By using a simple model, the mean crystal agglomerate size of DMB thus predicted is generally in agreement with the experimental data. In addition, the crystallization process of DMB was optimized by a new control strategy of supersaturation to avoid disadvantages brought by agglomeration.
5-(difluoromethoxy)-2-mercapto-1H-benzimidazole (DMB) / reactive crystallization / agglomeration / feeding rate / crystallization temperature / agitation rate
[1] |
Rajic K K, Novovic D, Marinkovic V, Agbaba D. First-order UV-derivative spectrophotometry in the analysis of omeprazole and pantoprazole sodium salt and corresponding impurities. Journal of Pharmaceutical and Biomedical Analysis, 2003, 32(4–5): 1019–1027
CrossRef
Google scholar
|
[2] |
Collier A P, Hounslow M J. Growth and aggregation rates for calcite and calcium oxalate monohydrate. AIChE Journal, 1999, 45(11): 2298–2305
CrossRef
Google scholar
|
[3] |
Ilievski D. Development and application of a constant supersaturation, semi-batch crystalliser for investigating gibbsite agglomeration. Journal of Crystal Growth, 2001, 233(4): 846–862
CrossRef
Google scholar
|
[4] |
Chen P C, Liu S M, Jang C J, Hwang R C, Yang Y L, Lee J S, Jang J S. Interpretation of gas-liquid reactive crystallization data using a size-independent agglomeration model. Journal of Crystal Growth, 2003, 257(3–4): 333–343
CrossRef
Google scholar
|
[5] |
David R, Marchal P, Klein J P, Villermaux J. Crystallization and precipitation engineering. III. A discrete formulation of the agglomeration rate of crystals in a crystallization process. Chemical Engineering Science, 1991, 46(1): 205–213
CrossRef
Google scholar
|
[6] |
Chang S M, Kim J M, Kim I H, Shin D M, Kim W S. Agglomeration control of L-ornithine asparate crystals in drowning-out crystallization. Industrial & Engineering Chemistry Research, 2006, 45(5): 1631–1635
CrossRef
Google scholar
|
[7] |
Zauner R, Jones A G. Mixing effects on product particle characteristics from semi-batch crystal precipitation.Chemical Engineering Research and Design, 2000, 78(6): 894–902
CrossRef
Google scholar
|
[8] |
Yu Z Q, Tan R B H, Chow P S. Effects of operating conditions on agglomeration and habit of paracetamol crystals in anti-solvent crystallization. Journal of Crystal Growth, 2005, 279(3–4): 477–488
CrossRef
Google scholar
|
[9] |
Seyssiecq I, Veesler S, Boistelle R, Lamerant J M. Agglomeration of Gibbsite Al(OH)3 crystals in Bayer liquors. Influence of the process parameters. Chemical Engineering Science, 1998, 53(12): 2177–2185
CrossRef
Google scholar
|
[10] |
Alander E M, Rasmuson A C. Mechanisms of crystal agglomeration of paracetamole in acetone-water mixtures. Industrial & Engineering Chemistry Research, 2005, 44(15): 5788–5794
CrossRef
Google scholar
|
[11] |
Synowiec P, Jones A G, Ayazi Shamlou P. ShamLou P A. Crystal break-up in dilute turbulently agitated suspensions. Chemical Engineering Science, 1993, 48(20): 3485–3495
CrossRef
Google scholar
|
[12] |
Sung M H, Choi I S, Kim J S, Kim W S. Agglomeration of yttrium oxalate particles produced by reaction precipitation in semi-batch reactor. Chemical Engineering Science, 2000, 55(12): 2173–2184
CrossRef
Google scholar
|
[13] |
Ayazi ShamLou P. Titchener-Hooker N. Turbulent aggregation and breakup of particles in liquid in stirred vessel. Oxford: Butterworth-Heinemann Ltd, 1993, 1–25
|
[14] |
Zauner R, Jones A G. Determination of nucleation, growth, agglomeration and disruption kinetics from experimental precipitation data: the calcium oxalate system. Chemical Engineering Science, 2000, 55(19): 4219–4232
CrossRef
Google scholar
|
[15] |
Chin C J, Yiacoumi S, Tsouris C. Shear-induced flocculation of colloidal particles in stirred tanks. Journal of Colloid and Interface Science, 1998, 206(2): 532–545
CrossRef
Google scholar
|
/
〈 | 〉 |