Repeated batch fermentation with water recycling and cell separation for microbial lipid production
Yumei WANG, Wei LIU, Jie BAO
Repeated batch fermentation with water recycling and cell separation for microbial lipid production
Large waste water disposal was the major problem in microbial lipid fermentation because of low yield of lipid. In this study, the repeated batch fermentation was investigated for reducing waste water generated in the lipid fermentation of an oleaginous yeast Trichosporon cutaneum CX1 strain. The waste fermentation broth was recycled in the next batch operation after the cells were separated using two different methods, centrifugation and flocculation. Two different sugar substrates, glucose and inulin, were applied to the proposed operation. The result showed that at least 70% of the waste water was reduced, while lipid production maintained satisfactory in the initial four cycles. Furthermore, it is suggested that T. cutaneum CX1 cells might produce certain naturally occurring inulin hydrolyzing enzyme(s) for obtaining fructose and glucose from inulin directly. Our method provided a practical option for reducing the waste water generated from microbial lipid fermentation.
batch fermentation / microbial lipid / Trichosporon cutaneum CX1 / flocculation / waste water recycle
[1] |
Kosa M, Ragauskas A J. Lipids from heterotrophic microbes: advances in metabolism research. Trends in Biotechnology, 2011, 29(2): 53-61
CrossRef
Google scholar
|
[2] |
Zhao X, Wu S G, Hu C M, Wang Q, Hua Y Y, Zhao Z K. Lipid production from Jerusalem artichoke by Rhodosporidium toruloides Y4. Journal of Industrial Microbiology & Biotechnology, 2010, 37(6): 581-585
CrossRef
Google scholar
|
[3] |
Huang X, Wang Y M, Liu W, Bao J. Biological removal of inhibitors leads to the improved lipid production in the lipid fermentation of corn stover hydrolysate by Trichosporon cutaneum. Bioresource Technology, 2011, 102(20): 9705-9709
CrossRef
Google scholar
|
[4] |
Liang Y N, Tang T Y, Umagiliyage A L, Siddaramu T, McCarroll M, Choudhary R. Utilization of sorghum bagasse hydrolysates for producing microbial lipids. Applied Energy, 2012, 91(1): 451-458
CrossRef
Google scholar
|
[5] |
Xue F Y, Miao J X, Zhang X, Luo H, Tan T W. Studies on lipid production by Rhodotorula glutinis fermentation using monosodium glutamate wastewater as culture medium. Bioresource Technology, 2008, 99(13): 5923-5927
CrossRef
Google scholar
|
[6] |
Zhao X, Hu C M, Wu S G, Shen H W, Zhao Z K. Lipid production by Rhodosporidium toruloides Y4 using different substrate feeding strategies. Journal of Industrial Microbiology & Biotechnology, 2011, 38(5): 627-632
CrossRef
Google scholar
|
[7] |
Evans C T, Ratledge C. A comparison of the oleaginous yeast, Candida curvata, grown on different carbon sources in continuous and batch culture. Lipids, 1983, 18(9): 623-629
CrossRef
Google scholar
|
[8] |
Lin J T, Shen H W, Tan H D, Zhao X, Wu S G, Hu C M, Zhao Z K. Lipid production by Lipomyces starkeyi cells in glucose solution without auxiliary nutrients. Journal of Biotechnology, 2011, 152(4): 184-188
CrossRef
Google scholar
|
[9] |
Hsiao T Y, Glatz C E, Glatz B A. Broth recycle in a yeast fermentation. Biotechnology and Bioengineering, 1994, 44(10): 1228-1234
CrossRef
Google scholar
|
[10] |
Babu P, Panda T. Effect of recycling of fermentation broth for the production of penicillin amidase. Process Biochemistry (Barking, London, England), 1991, 26(1): 7-14
CrossRef
Google scholar
|
[11] |
Hsiao T Y, Glatz C E. Water reuse in the L-lysine fermentation process. Biotechnology and Bioengineering, 1996, 49(3): 341-347
CrossRef
Google scholar
|
[12] |
Converti A, Perego P, Lodi A, Fiorito G, Borghi M, Ferraiolo G. In-situ ethanol recovery and substrate recycling during continuous alcohol fermentation. Bioprocess and Biosystems Engineering, 1991, 7(1): 3-10
|
[13] |
Gao J, Xu H, Li Q J, Feng X H, Li S. Optimization of medium for one-step fermentation of inulin extract from Jerusalem artichoke tubers using Paenibacillus polymyxa ZJ-9 to produce R,R-2,3-butanediol. Bioresource Technology, 2010, 101(18): 7076-7082
CrossRef
Google scholar
|
[14] |
Hughes J, Ramsden D, Symes K. The flocculation of bacteria using cationic synthetic flocculants and chitosan. Biotechnology Techniques, 1990, 4(1): 55-60
CrossRef
Google scholar
|
[15] |
Silva A C, Guimarães P M R, Teixeira J A, Domingues L. Fermentation of deproteinized cheese whey powder solutions to ethanol by engineered Saccharomyces cerevisiae: effect of supplementation with corn steep liquor and repeated-batch operation with biomass recycling by flocculation. Journal of Industrial Microbiology & Biotechnology, 2010, 37(9): 973-982
CrossRef
Google scholar
|
[16] |
Folch J, Lees M, Sloane-Stanley G. A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 1957, 226(1): 497-509
|
[17] |
Chen X, Li Z H, Zhang X X, Hu F X, Ryu D D Y, Bao J. Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds. Applied Biochemistry and Biotechnology, 2009, 159(3): 591-604
CrossRef
Google scholar
|
[18] |
Zhao C H, Zhang T, Li M, Chi Z M. Single cell oil production from hydrolysates of inulin and extract of tubers of Jerusalem artichoke by Rhodotorula mucilaginosa TJY15a. Process Biochemistry (Barking, London, England), 2010, 45(7): 1121-1126
CrossRef
Google scholar
|
[19] |
Zhao C H, Cui W, Liu X Y, Chi Z M, Madzak C. Expression of inulinase gene in the oleaginous yeast Yarrowia lipolytica and single cell oil production from inulin-containing materials. Metabolic Engineering, 2010, 12(6): 510-517
CrossRef
Google scholar
|
[20] |
Zhao X, Wu S G, Hu C M, Wang Q, Hua Y Y, Zhao Z B K. Lipid production from Jerusalem artichoke by Rhodosporidium toruloides Y4. Journal of Industrial Microbiology & Biotechnology, 2010, 37(6): 581-585
CrossRef
Google scholar
|
[21] |
Li Y H, Zhao Z B, Bai F W. High-density cultivation of oleaginous yeast Rhodosporidium toruloides Y4 in fed-batch culture. Enzyme and Microbial Technology, 2007, 41(3): 312-317
CrossRef
Google scholar
|
/
〈 | 〉 |