Fabrication, modification and environmental applications of TiO2 nanotube arrays (TNTAs) and nanoparticles

S. ROHANI , T. ISIMJAN , A. MOHAMED , H. KAZEMIAN , M. SALEM , T. WANG

Front. Chem. Sci. Eng. ›› 2012, Vol. 6 ›› Issue (1) : 112 -122.

PDF (878KB)
Front. Chem. Sci. Eng. ›› 2012, Vol. 6 ›› Issue (1) : 112 -122. DOI: 10.1007/s11705-011-1144-6
RESEARCH ARTICLE
RESEARCH ARTICLE

Fabrication, modification and environmental applications of TiO2 nanotube arrays (TNTAs) and nanoparticles

Author information +
History +
PDF (878KB)

Abstract

Among the semiconductors, titanium dioxide has been identified as an effective photocatalyst due to its abundance, low cost, stability, and superior electronic energy band structure. Highly ordered nanotube arrays of titania were produced by anodization and mild sonication. The band gap energy of the titania nanotube arrays was reduced to 2.6 eV by co-doping with Fe, C, N atoms using an electrolyte solution containing K3Fe(CN)6. The photoconversion of phenol in a batch photoreactor increased to more than 18% based on the initial concentration of phenol by using a composite nanomaterial consisting of titania nanotube arrays and Pt/ZIF-8 nanoparticles. A layer-by-layer assembly technique for the deposition of titania nanoparticles was developed to fabricate air filters for the degradation of trace amounts of toluene in the air and preparation of superhyrophobic surfaces for oil-water separation and anti-corrosion surfaces.

Keywords

TiO2 nanotube arrays and nanoparticles / anodization / bandgap modification / layer-by-layer deposition / oil-water separation

Cite this article

Download citation ▾
S. ROHANI, T. ISIMJAN, A. MOHAMED, H. KAZEMIAN, M. SALEM, T. WANG. Fabrication, modification and environmental applications of TiO2 nanotube arrays (TNTAs) and nanoparticles. Front. Chem. Sci. Eng., 2012, 6(1): 112-122 DOI:10.1007/s11705-011-1144-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

AdamsD M, BrusL, ChidseyC E D, CreagerS, CreutzC, KaganC R, KamatP V, LiebermanM, LindsayS, MarcusR A, MetzgerR M, Michel-BeyerleM E, MillerJ R, NewtonM D, RolisonD R, SankeyO, SchanzeK S, YardleyJ, ZhuX. Charge transfer on the nanoscale: current status.Journal of Physical Chemistry. B, 2003, 107(28): 6668-6697

[2]

AlivisatosA P. Perspectives on the physical chemistry of semiconductor nanocrystals.Journal of Physical Chemistry, 1996, 100(31): 13226-13239

[3]

AlivisatosA P. Semiconductor clusters, nanocrystals, and quantum dots.Science, 1996, 271(5251): 933-937

[4]

LinsebiglerA L, LuG, YatesJ T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results.Chemical Reviews, 1995, 95(3): 735-758

[5]

NakamuraR, OhashiN, ImanishiA, OsawaT, MatsumotoY, KoinumaH, NakatoY. Crystal-face dependences of surface band edges and hole reactivity, revealed by preparation of essentially atomically smooth and stable (110) and (100) n-TiO(2) (rutile) surfaces.Journal of Physical Chemistry B, 2005, 109(5): 1648-1651

[6]

NeumannB, BogdanoffP, TributschH, SakthivelS, KischH. Electrochemical mass spectroscopic and surface photovoltage studies of catalytic water photooxidation by undoped and carbon-doped titania.Journal of Physical Chemistry. B, 2005, 109(35): 16579-16586

[7]

FujishimaA, HondaK. Electrochemical photolysis of water at a semiconductor electrode.Nature, 1972, 238(5358): 37-38

[8]

PauloseM, MorG K, VargheseO K, ShankarK, GrimesC A. Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays.Journal of Photochemistry and Photobiology. A,2006, 178(1): 8-15

[9]

WangR, HashimotoK, FujishimaA, ChikuniM, KojimaE, KitamuraA, ShimohigoshiM, WatanabeT. Light-induced amphiphilic surfaces.Nature, 1997, 388(6641): 431-432

[10]

YoriyaS, PrakasamH E, VargheseO K, ShankarK, PauloseM, MorG K, LatempaT J, GrimesC A. Initial studies on the hydrogen gas sensing properties of highly-ordered high aspect ratio TiO2 nanotube-arrays 20 m to 222 m in length.Sensors Letters, 2006, 4(3): 334-339

[11]

NgamsinlapasasathianS, SakulkhaemaruethaiS, PavasupreeS, KitiyananA, SreethawongT, SuzukiY, YoshikawaS. Highly efficient dye-sensitized solar cell using nanocrystalline titania containing nanotube structure. Journal of Photochemistry and Photobiology. A, 2004, 164(1-3): 145-151

[12]

HoyerP. Formation of a titanium dioxide nanotube array.Langmuir, 1996, 12(6): 1411-1413

[13]

LakshmiB B, DorhoutP K, MartinC R. Sol-gel template synthesis of semiconductor nanostructures.Chemistry of Materials, 1997, 9(3): 857-862

[14]

ZhangM, BrandoY, WadaK. Sol-gel template preparation of TiO2 nanotubues and nanorodes.Journal of Materials Science Letters, 2001, 20(2): 167-170

[15]

BavykinD V, ParmonV N, LapkinA A, WalshF C. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes.Journal of Materials Chemistry, 2004, 14(22): 3370-3377

[16]

OuH H, LoS L. Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application.Separation and Purification Technology, 2007, 58(1): 179-191

[17]

ZwillingV, Darque-CerettiE, Boutry-ForveilleA, DavidD, PerrinM Y, AucouturierM. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy.Surface and Interface Analysis, 1999, 27(7): 629-637

[18]

FrankA J, KopidakisN. And de Lagemaat, J. V. Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties.Coordination Chemistry Reviews, 2004, 248: 1165-1179

[19]

LawM, GreeneL E, JohnsonJ C, SaykallyR, YangP. Nanowire dye-sensitized solar cells.Nature Materials, 2005, 4(6): 455-459

[20]

MorG K, ShankarK, PauloseM, VargheseO K, GrimesC A. Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells.Nano Letters, 2006, 6(2): 215-218

[21]

CaoF, OskamG, MeyerG J, SearsonP C. Electron transport in porous nanocrystalline TiO2 photoelectrochemical cells.Journal of Physical Chemistry, 1996, 100(42): 17021-17027

[22]

VanmaekelberghD, VanmaekelberghD. Trap-limited electronic transport in assemblies of nanometer-size TiO2 particles.Physical Review Letters, 1996, 77(16): 3427-3430

[23]

WahlA, UlmannM, CarroyA, AugustynskiJ. Highly selective photo-oxidation reactions at nanocrystalline TiO2 film electrodes.Journal of the Chemical Society, Chemical Communications,1994, 2277-2278

[24]

SantatoC, UlmannM, AugustynskiJ. Photoelectrochemical properties of nanostructured tungsten trioxide films.Journal of Physical Chemistry B, 2001, 105(5): 936-940

[25]

AdachiM, MurataY, OkadaI, YoshikawaS. Formation of titania nanotubes and applications for dye-sensitized solar cells.Journal of the Electrochemical Society, 2003, 150(8): G488-G493

[26]

RaoC N R, GovindarajA. Nanotubes and Nanowires. Cambridge, UK: The Royal Society of Chemistry, 2005

[27]

PauloseM, ShankarK, VargheseO K, MorG K, GrimesC A. Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells.Journal of Physics. D, Applied Physics, 2006, 39(12): 2498-2503

[28]

ParkJ H, KimS, BardA J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting.Nano Letters, 2006, 6(1): 24-28

[29]

MohamedA, RohaniS. Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review. Energy &.Environmental Sciences, 2011, 4: 1065-1086

[30]

GongD, GrimesC A, VargheseO K, HuW, SinghR S, ChenZ, DickeyE. Titanium oxide nanotube arrays prepared by anodic oxidation.Journal of Materials Research, 2001, 16(12): 3331-3334

[31]

MacákJ M, TsuchiyaH, SchmukiP. High-aspect-ratio TiO2 nanotubes by anodization of titanium.Angewandte Chemie International Edition, 2005, 44(14): 2100-2102

[32]

ZhaoW, MaW, ChenC, ZhaoJ, ShuaiZ. Efficient degradation of toxic organic pollutants with Ni2O3/TiO(2-x)Bx under visible irradiation.Journal of the American Chemical Society, 2004, 126(15): 4782-4783

[33]

IsimjanT T, YangD Q, RohaniS, RayA K. An innovative approach to synthesize highly-ordered TiO2 nanotubes.Journal of Nanoscience and Nanotechnology, 2011, 11(2): 1079-1083

[34]

CaiQ, YangL, YuY. Investigations on the self-organized growth of TiO2 nanotube arrays by anodic oxidization.Thin Solid Films, 2006, 515(4): 1802-1806

[35]

WangH, YipC T, CheungK Y, DjurisicA B, XieM H, LeungY H,ChenW K.Titania-nanotube-array-based photovoltaic cells.Applied Physics Letters, 2006, 89: 023508,1-3

[36]

DengL, WangS, LiuD, ZhuB, HuangW, WuS, ZhangS. Synthesis, characterization of Fe-doped TiO2 nanotubes with high photocatalytic activity.Catalysis Letters, 2009, 129(3-4): 513-518

[37]

ZaleskaA. Doped-TiO2: a review.Recent Patents on Engineering, 2008, 2(3): 157-164

[38]

Pedraza-AvelaJ A, LópezR, Martínez-OrtegaF, Páez-MozoE A, GómezR. Effect of chromium doping on visible light absorption of nanosized titania sol-gel.Journal of Nano Research, 2009, 5: 95-104

[39]

LeiL, SuY, ZhouM, ZhangX, ChenX. Fabrication of multi-non-metal-doped TiO2 nanotubes by anodization in mixed acid electrolyte.Materials Research Bulletin, 2007, 42(12): 2230-2236

[40]

IsimjanT T, RubyA E, RohaniS, RayA K. The fabrication of highly ordered and visible-light-responsive Fe-C-N-codoped TiO2 nanotubes.Nanotechnology, 2010, 21(5): 055706

[41]

IsimjanT T, KazemianH, RohaniS, RayA K. Photocatalytic activities of Pt/ZIF-8 loaded highly ordered TiO2 nanotubes.Journal of Materials Chemistry, 2010, 20(45): 10241-10245

[42]

WangT, IsimjanT,ChenJ,RohaniS. Transparent nanostructured coatings with UV-shielding and superhydrophobicity properties.Nanotechnology, 2011, 22(26): 265708/1-265708/7

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (878KB)

3846

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/