Fabrication, modification and environmental applications of TiO2 nanotube arrays (TNTAs) and nanoparticles
S. ROHANI, T. ISIMJAN, A. MOHAMED, H. KAZEMIAN, M. SALEM, T. WANG
Fabrication, modification and environmental applications of TiO2 nanotube arrays (TNTAs) and nanoparticles
Among the semiconductors, titanium dioxide has been identified as an effective photocatalyst due to its abundance, low cost, stability, and superior electronic energy band structure. Highly ordered nanotube arrays of titania were produced by anodization and mild sonication. The band gap energy of the titania nanotube arrays was reduced to 2.6 eV by co-doping with Fe, C, N atoms using an electrolyte solution containing K3Fe(CN)6. The photoconversion of phenol in a batch photoreactor increased to more than 18% based on the initial concentration of phenol by using a composite nanomaterial consisting of titania nanotube arrays and Pt/ZIF-8 nanoparticles. A layer-by-layer assembly technique for the deposition of titania nanoparticles was developed to fabricate air filters for the degradation of trace amounts of toluene in the air and preparation of superhyrophobic surfaces for oil-water separation and anti-corrosion surfaces.
TiO2 nanotube arrays and nanoparticles / anodization / bandgap modification / layer-by-layer deposition / oil-water separation
[1] |
AdamsD M, BrusL, ChidseyC E D, CreagerS, CreutzC, KaganC R, KamatP V, LiebermanM, LindsayS, MarcusR A, MetzgerR M, Michel-BeyerleM E, MillerJ R, NewtonM D, RolisonD R, SankeyO, SchanzeK S, YardleyJ, ZhuX. Charge transfer on the nanoscale: current status.Journal of Physical Chemistry. B, 2003, 107(28): 6668-6697
CrossRef
Google scholar
|
[2] |
AlivisatosA P. Perspectives on the physical chemistry of semiconductor nanocrystals.Journal of Physical Chemistry, 1996, 100(31): 13226-13239
CrossRef
Google scholar
|
[3] |
AlivisatosA P. Semiconductor clusters, nanocrystals, and quantum dots.Science, 1996, 271(5251): 933-937
CrossRef
Google scholar
|
[4] |
LinsebiglerA L, LuG, YatesJ T. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results.Chemical Reviews, 1995, 95(3): 735-758
CrossRef
Google scholar
|
[5] |
NakamuraR, OhashiN, ImanishiA, OsawaT, MatsumotoY, KoinumaH, NakatoY. Crystal-face dependences of surface band edges and hole reactivity, revealed by preparation of essentially atomically smooth and stable (110) and (100) n-TiO(2) (rutile) surfaces.Journal of Physical Chemistry B, 2005, 109(5): 1648-1651
CrossRef
Pubmed
Google scholar
|
[6] |
NeumannB, BogdanoffP, TributschH, SakthivelS, KischH. Electrochemical mass spectroscopic and surface photovoltage studies of catalytic water photooxidation by undoped and carbon-doped titania.Journal of Physical Chemistry. B, 2005, 109(35): 16579-16586
CrossRef
Pubmed
Google scholar
|
[7] |
FujishimaA, HondaK. Electrochemical photolysis of water at a semiconductor electrode.Nature, 1972, 238(5358): 37-38
CrossRef
Pubmed
Google scholar
|
[8] |
PauloseM, MorG K, VargheseO K, ShankarK, GrimesC A. Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays.Journal of Photochemistry and Photobiology. A,2006, 178(1): 8-15
CrossRef
Google scholar
|
[9] |
WangR, HashimotoK, FujishimaA, ChikuniM, KojimaE, KitamuraA, ShimohigoshiM, WatanabeT. Light-induced amphiphilic surfaces.Nature, 1997, 388(6641): 431-432
CrossRef
Google scholar
|
[10] |
YoriyaS, PrakasamH E, VargheseO K, ShankarK, PauloseM, MorG K, LatempaT J, GrimesC A. Initial studies on the hydrogen gas sensing properties of highly-ordered high aspect ratio TiO2 nanotube-arrays 20 m to 222 m in length.Sensors Letters, 2006, 4(3): 334-339
CrossRef
Google scholar
|
[11] |
NgamsinlapasasathianS, SakulkhaemaruethaiS, PavasupreeS, KitiyananA, SreethawongT, SuzukiY, YoshikawaS. Highly efficient dye-sensitized solar cell using nanocrystalline titania containing nanotube structure. Journal of Photochemistry and Photobiology. A, 2004, 164(1-3): 145-151
CrossRef
Google scholar
|
[12] |
HoyerP. Formation of a titanium dioxide nanotube array.Langmuir, 1996, 12(6): 1411-1413
CrossRef
Google scholar
|
[13] |
LakshmiB B, DorhoutP K, MartinC R. Sol-gel template synthesis of semiconductor nanostructures.Chemistry of Materials, 1997, 9(3): 857-862
CrossRef
Google scholar
|
[14] |
ZhangM, BrandoY, WadaK. Sol-gel template preparation of TiO2 nanotubues and nanorodes.Journal of Materials Science Letters, 2001, 20(2): 167-170
CrossRef
Google scholar
|
[15] |
BavykinD V, ParmonV N, LapkinA A, WalshF C. The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes.Journal of Materials Chemistry, 2004, 14(22): 3370-3377
CrossRef
Google scholar
|
[16] |
OuH H, LoS L. Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application.Separation and Purification Technology, 2007, 58(1): 179-191
CrossRef
Google scholar
|
[17] |
ZwillingV, Darque-CerettiE, Boutry-ForveilleA, DavidD, PerrinM Y, AucouturierM. Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy.Surface and Interface Analysis, 1999, 27(7): 629-637
CrossRef
Google scholar
|
[18] |
FrankA J, KopidakisN. And de Lagemaat, J. V. Electrons in nanostructured TiO2 solar cells: transport, recombination and photovoltaic properties.Coordination Chemistry Reviews, 2004, 248: 1165-1179
CrossRef
Google scholar
|
[19] |
LawM, GreeneL E, JohnsonJ C, SaykallyR, YangP. Nanowire dye-sensitized solar cells.Nature Materials, 2005, 4(6): 455-459
CrossRef
Pubmed
Google scholar
|
[20] |
MorG K, ShankarK, PauloseM, VargheseO K, GrimesC A. Use of highly-ordered TiO(2) nanotube arrays in dye-sensitized solar cells.Nano Letters, 2006, 6(2): 215-218
CrossRef
Pubmed
Google scholar
|
[21] |
CaoF, OskamG, MeyerG J, SearsonP C. Electron transport in porous nanocrystalline TiO2 photoelectrochemical cells.Journal of Physical Chemistry, 1996, 100(42): 17021-17027
CrossRef
Google scholar
|
[22] |
VanmaekelberghD, VanmaekelberghD. Trap-limited electronic transport in assemblies of nanometer-size TiO2 particles.Physical Review Letters, 1996, 77(16): 3427-3430
CrossRef
Pubmed
Google scholar
|
[23] |
WahlA, UlmannM, CarroyA, AugustynskiJ. Highly selective photo-oxidation reactions at nanocrystalline TiO2 film electrodes.Journal of the Chemical Society, Chemical Communications,1994, 2277-2278
|
[24] |
SantatoC, UlmannM, AugustynskiJ. Photoelectrochemical properties of nanostructured tungsten trioxide films.Journal of Physical Chemistry B, 2001, 105(5): 936-940
CrossRef
Google scholar
|
[25] |
AdachiM, MurataY, OkadaI, YoshikawaS. Formation of titania nanotubes and applications for dye-sensitized solar cells.Journal of the Electrochemical Society, 2003, 150(8): G488-G493
CrossRef
Google scholar
|
[26] |
RaoC N R, GovindarajA. Nanotubes and Nanowires. Cambridge, UK: The Royal Society of Chemistry, 2005
|
[27] |
PauloseM, ShankarK, VargheseO K, MorG K, GrimesC A. Application of highly-ordered TiO2 nanotube-arrays in heterojunction dye-sensitized solar cells.Journal of Physics. D, Applied Physics, 2006, 39(12): 2498-2503
CrossRef
Google scholar
|
[28] |
ParkJ H, KimS, BardA J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting.Nano Letters, 2006, 6(1): 24-28
CrossRef
Pubmed
Google scholar
|
[29] |
MohamedA, RohaniS. Modified TiO2 nanotube arrays (TNTAs): progressive strategies towards visible light responsive photoanode, a review. Energy &.Environmental Sciences, 2011, 4: 1065-1086
|
[30] |
GongD, GrimesC A, VargheseO K, HuW, SinghR S, ChenZ, DickeyE. Titanium oxide nanotube arrays prepared by anodic oxidation.Journal of Materials Research, 2001, 16(12): 3331-3334
CrossRef
Google scholar
|
[31] |
MacákJ M, TsuchiyaH, SchmukiP. High-aspect-ratio TiO2 nanotubes by anodization of titanium.Angewandte Chemie International Edition, 2005, 44(14): 2100-2102
CrossRef
Pubmed
Google scholar
|
[32] |
ZhaoW, MaW, ChenC, ZhaoJ, ShuaiZ. Efficient degradation of toxic organic pollutants with Ni2O3/TiO(2-x)Bx under visible irradiation.Journal of the American Chemical Society, 2004, 126(15): 4782-4783
CrossRef
Pubmed
Google scholar
|
[33] |
IsimjanT T, YangD Q, RohaniS, RayA K. An innovative approach to synthesize highly-ordered TiO2 nanotubes.Journal of Nanoscience and Nanotechnology, 2011, 11(2): 1079-1083
CrossRef
Pubmed
Google scholar
|
[34] |
CaiQ, YangL, YuY. Investigations on the self-organized growth of TiO2 nanotube arrays by anodic oxidization.Thin Solid Films, 2006, 515(4): 1802-1806
CrossRef
Google scholar
|
[35] |
WangH, YipC T, CheungK Y, DjurisicA B, XieM H, LeungY H,ChenW K.Titania-nanotube-array-based photovoltaic cells.Applied Physics Letters, 2006, 89: 023508,1-3
|
[36] |
DengL, WangS, LiuD, ZhuB, HuangW, WuS, ZhangS. Synthesis, characterization of Fe-doped TiO2 nanotubes with high photocatalytic activity.Catalysis Letters, 2009, 129(3-4): 513-518
CrossRef
Google scholar
|
[37] |
ZaleskaA. Doped-TiO2: a review.Recent Patents on Engineering, 2008, 2(3): 157-164
CrossRef
Google scholar
|
[38] |
Pedraza-AvelaJ A, LópezR, Martínez-OrtegaF, Páez-MozoE A, GómezR. Effect of chromium doping on visible light absorption of nanosized titania sol-gel.Journal of Nano Research, 2009, 5: 95-104
CrossRef
Google scholar
|
[39] |
LeiL, SuY, ZhouM, ZhangX, ChenX. Fabrication of multi-non-metal-doped TiO2 nanotubes by anodization in mixed acid electrolyte.Materials Research Bulletin, 2007, 42(12): 2230-2236
CrossRef
Google scholar
|
[41] |
IsimjanT T, RubyA E, RohaniS, RayA K. The fabrication of highly ordered and visible-light-responsive Fe-C-N-codoped TiO2 nanotubes.Nanotechnology, 2010, 21(5): 055706
CrossRef
Pubmed
Google scholar
|
[40] |
IsimjanT T, KazemianH, RohaniS, RayA K. Photocatalytic activities of Pt/ZIF-8 loaded highly ordered TiO2 nanotubes.Journal of Materials Chemistry, 2010, 20(45): 10241-10245
CrossRef
Google scholar
|
[42] |
WangT, IsimjanT,ChenJ,RohaniS. Transparent nanostructured coatings with UV-shielding and superhydrophobicity properties.Nanotechnology, 2011, 22(26): 265708/1-265708/7
|
/
〈 | 〉 |