Ag/PMMA hollow waveguide for solar energy transmission

He LAN , Jianjun HAN , Hongping CHEN , Xiujian ZHAO

Front. Chem. Sci. Eng. ›› 2011, Vol. 5 ›› Issue (3) : 303 -307.

PDF (173KB)
Front. Chem. Sci. Eng. ›› 2011, Vol. 5 ›› Issue (3) : 303 -307. DOI: 10.1007/s11705-010-0565-y
RESEARCH ARTICLE
RESEARCH ARTICLE

Ag/PMMA hollow waveguide for solar energy transmission

Author information +
History +
PDF (173KB)

Abstract

This paper describes an elaborate study on obtaining Ag/PMMA (polymethyl methacrylate) leaky hollow waveguide which has a large aperture and low loss in transmitting solar energy. Through analyses and comparison, a quartz capillary with the inner diameter of 2 mm was chosen as hollow waveguide. We used the xenon light source, which has the similar spectrum as the sunlight to test and analyze the performance of the Ag/PMMA leakage hollow waveguide. The results are consistent with the transmitted theory of the dielectric/metal leaky type well. Meanwhile, the Ag/PMMA leaky-type hollow waveguide in this work had good qualities. Therefore, it will be a satisfactory medium for solar energy transmission.

Keywords

hollow waveguide / transmit the solar energy / Ag/PMMA multiple film / parabolic collector

Cite this article

Download citation ▾
He LAN, Jianjun HAN, Hongping CHEN, Xiujian ZHAO. Ag/PMMA hollow waveguide for solar energy transmission. Front. Chem. Sci. Eng., 2011, 5(3): 303-307 DOI:10.1007/s11705-010-0565-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Krishen K. Future trends in antennas and propagation for the US space program. Antennas and Propagation Magazine, IEEE, 1994, 36(1): 31–35

[2]

Harrington J A. Infrared Fiber Optics. OSA Handbook. New York: McGraw Hill, 1992, 3: 8–9

[3]

Harrington J A. A review of IR transmitting hollow waveguides. Fiber and Integrated Optics, 2000, 19(3): 211–227

[4]

Miyagi M, Hongo A, Aizawa Y, Kawakami S. Fabrication of germanium coated nickel hollow waveguides for infrared transmission. Applied Physics Letters, 1983, 43(5): 430–432

[5]

Croitoru N, Dror J, Gannot I. Characterization of hollow fibers for the transmission of infrared radiation. Applied Optics, 1990, 29(12): 1805–1809

[6]

Abel T, Hirsch J, Harrington J A. Hollow glass waveguides for broadband infrared transmission. Optics Letters, 1994, 19(14): 1034–1036

[7]

Gregory C C, Harrington J A. Attenuation, modal, and polarization properties of n<1, hollow dielectric waveguides. Applied Optics, 1993, 32(27): 5302–5309

[8]

Harrington J A, Gregory C C. Hollow sapphire fibers for the delivery of CO(2) laser energy. Optics Letters, 1990, 15(10): 541–543

[9]

Dahan R, Dror J, Croitoru N. Characterization of chemically formed silver iodide layers for hollow infrared guides. Materials Research Bulletin, 1992, 27(6): 761–766

[10]

Wang Y, Shi Y W, Matsuura Y, Miyagi M. Small-bore fluorocarbon polymer-coated silver hollow glass waveguide for Er: YAG laser light. Optics & Laser Technology, 1997, 29(8): 455–461

[11]

Wang Y, Matsuura Y, Miyagi M. Robust hollow devices and waveguides for Er: YAG laser radiation. Optics & Laser Technology, 1997, 29(8): 449–453

[12]

Feuermann D, Jeffrey M G. Solar fiber-optic mini-dishes: a new approach to the efficient collection of sunlight. Solar Energy, 1999, 65(3): 159–170

[13]

Feuermann D, Jeffrey M G, Mahmoud H. Solar fiber-optic mini-dish concentrators: first experimental results and field experience. Solar Energy, 2002, 72(6): 459–472

[14]

Abe Y, Shi Y W, Matsuura Y, Miyagi M. Flexible small-bore hollow fibers with an inner polymer coating. Optics Letters, 2000, 25(3): 150–152

[15]

Shi G, Han J, Zhang Z, Song H, Lee B. Pretreatment effect on the synthesis of Ag-coated Al2O3 powders by electroless deposition process. Surface and Coatings Technology, 2005, 195(2-3): 333–337

[16]

Welford W T, Winston R. High Collection Nonimaging Optics. San Diego: Academic Press, 1989, 50–58

[17]

Decher G, Schlenoff J B. Multilayer Thin Films. Weinheim: Wiley-VCH, 2003, 472–475

[18]

Schaefers S, Rast L, Stanishevsky A. Electroless silver plating on spin-coated silver nanoparticle seed layers. Materials Letters, 2006, 60(5): 706–709

[19]

Kim J Y, Shin D H, Ihn K J. Synthesis of poly(urethane acrylate-co-styrene) films containing silver nanoparticles by a simultaneous copolymerization/in situ electron transfer reaction. Macromolecular Chemistry and Physics, 2005, 206(7): 794–801

[20]

Snitzer E. Cylindrical dielectric waveguides modes. Journal of the Optical Society of America, 1961, 51(5): 491–498

[21]

Marcatili E, Schmeltzer R. Hollow metallic and dielectric waveguides for long distance optical transmission and lasers. Bell System Technical Journal, 1964, 43: 1783–1809

RIGHTS & PERMISSIONS

Higher Education Press and Springer-Verlag Berlin Heidelberg

AI Summary AI Mindmap
PDF (173KB)

2371

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/