
Review of
Yanni WU, Shijun LIAO
Front. Chem. Sci. Eng. ›› 2009, Vol. 3 ›› Issue (3) : 330-343.
Review of
Some metal oxides modified with sulfate ions form highly acidic or superacidic catalysts.
solid superacid catalyst / synthesis method / characterization / applications
[1] |
Zheng A, Zhang H L, Chen L, Yue Y, Ye C H, Deng F. Relationship between 1H chemical shifts of deuterated pyridinium ions and Brønsted acid strength of solid acids. J Phys Chem B, 2007, 111: 3085-3089
CrossRef
Google scholar
|
[2] |
Farcasiu D, Lee K H. Isomerization of hexane by zeolite HZSM-5 the effect of cyclic hydrocarbons. J Mol Catal A: Chem, 2000, 161: 213-221
CrossRef
Google scholar
|
[3] |
Chaabene S B, Bergaoui L, Ghorbel A, Lambert J F, Grange P. In situ preparation of zirconium sulfate pillared clay: study of acidic properties. Appl Catal A, 2004, 268: 25-31
CrossRef
Google scholar
|
[4] |
Kim S Y, James G, Goodwin Jr, Dan Farcasiu. The effects of reaction conditions and catalyst deactivation on the mechanism of n-butane isomerization on sulfated zirconia. Appl Catal A, 2001, 207: 281-286
CrossRef
Google scholar
|
[5] |
David J Z, Alerasool S, Doolin P K. Characterization of catalytically active sulfated zirconia. Catal Today, 1999, 53: 419-432
CrossRef
Google scholar
|
[6] |
Samantaray S K, Parida K. Review: effect of anions on the textural and catalytic activity of titania-silica mixed oxide. J Mater Sci, 2004, 39: 3549-3562
CrossRef
Google scholar
|
[7] |
Salas P, Hernandez J G, Montoya J A. Effect of tin content on silica mixed oxides: sulfated and unsulfated catalysts. J Mol Catal A: Chem, 1997, 123: 149-154
CrossRef
Google scholar
|
[8] |
Sohn J R, Lee S H, Lim J S. New solid superacid catalyst prepared by doping ZrO2 with Ce and modifying with sulfate and its catalytic activity for acid catalysis. Catal Today, 2006, 116: 143-150
CrossRef
Google scholar
|
[9] |
Yadav G D, Pathre G S. Novel mesoporous solid superacids for selective C-alkylation of m-cresol with tert-butanol. Microporous Mesoporous Mater, 2006, 89: 16-24
CrossRef
Google scholar
|
[10] |
Yadav G D, George G. Friedel-Crafts acylation of anisole with propionic anhydride over mesoporous superacid catalyst UDCaT-5. Microporous Mesoporous Mater, 2006, 96: 36-43
CrossRef
Google scholar
|
[11] |
Yadav G D, Pimparkar K P. Insight into Friedel-Crafts acylation of 1,4-dimethoxybenzene to 2,5-dimethoxyacetophenone catalysed by solid acids—mechanism, kinetics and remedies for deactivation. J Mol Catal A: Chem, 2007, 264: 179-191
CrossRef
Google scholar
|
[12] |
Sohn J R, Dong C, Shin D C. Environmentally friendly solid acid catalyst prepared by modifying TiO2 with cerium sulfate for the removal of volatile organic chemicals. Appl Catal B, 2008, 77: 386-394
CrossRef
Google scholar
|
[13] |
Sohn J R, Lee S H, Lim J S. New solid superacid catalyst prepared by doping ZrO2 with Ce and modifying with sulfate and its catalytic activity for acid catalysis. Catal Today, 2006, 116: 143-150
CrossRef
Google scholar
|
[14] |
Zhou D Q, Yang J H, Dong G M, Huang M Y, Jiang Y Y. Solid superacid, silica-supported polytrifluoromethanesulfosiloxane catalyzed Friedel-Crafts benzylation of benzene and substituted benzenes. J Mol Catal A: Chem, 2000, 159: 85-87
CrossRef
Google scholar
|
[15] |
Matsuhashi H, Tanaka M, Nakamura H, Arata K. Formation of acid sites in ordered pores of FSM-16 by modification with sulfated zirconia. Appl Catal A-General, 2001, 208: 1-5
CrossRef
Google scholar
|
[16] |
Liao S J, Wang L F, Yang Z X, Yu W W, Huang Z T. Study on the superacid catalyst
|
[17] |
Sohn J R, Kim H W. Catalytic and surface properties of ZrO2 modified with sulfur compounds. J Mol Catal, 1989, 52: 361-368
CrossRef
Google scholar
|
[18] |
Wang J, Yang P P, Fan M Q, Yu W, Jing X Y, Zhang M L, Duan X. Preparation and characterization of novel magnetic ZrO2/TiO2/Fe3O4 solid superacid. Mater Lett, 2007, 61: 2235-2238
CrossRef
Google scholar
|
[19] |
Wu Y N, Guo H F, Cui X L. Study on the conditions of preparation of
|
[20] |
Guizard C G, Julbe A C, Ayral A. Design of nanosized structures in sol-gel derived porous solids. Applications in catalyst and inorganic membrane preparation. J Mater Chem, 1999, 9: 55-65
CrossRef
Google scholar
|
[21] |
Guevara-Franco M L, Robles-Andrades, García-Alamillaa R, Sandoval-Robles G, Domínguez-Esquivel J M. Study of n-hexane isomerization on mixed
CrossRef
Google scholar
|
[22] |
Zhao Q R, Wu C H, Bi Y M, Jiang J, Shi R, Qin H Y. Study on the synthesis of terpinyl acetate catalyzed by
|
[23] |
Guo H F, Zhu Z F, Yan P, Wu Y N, Li S M, Wang L Y. Synthesis of terpinyl acetate over
|
[24] |
Guo H F, Wang Z Z, Yang J C, Cui X L, Li X, Wu Y N. Characterization of
|
[25] |
Xu J H, Li X C, Li P, Cao X H.
|
[26] |
Wan Y, Ma J X, Zhou W, Zhu Y J, Song X Y, Lia H X. Preparation of titania-zirconia composite aerogel material by sol-gel combined with supercritical fluid drying. Appl Catal A-General, 2004, 277: 55-59
CrossRef
Google scholar
|
[27] |
Debra J M, Ronald A K. Tailoring the pore size of mesoporous sulfated zirconia. Microporous Mesoporous Mater, 2000, 37: 281-289
CrossRef
Google scholar
|
[28] |
Risch M, Wolf E E. Effect of the preparation of a mesoporous sulfated zirconia catalyst in n-butane isomerization activity. Appl Catal A, General, 2001, 206: 283-293
CrossRef
Google scholar
|
[29] |
Hino M, Arata K. One-step preparation of manganese-, iron-, and aluminum-promoted sulfated zirconias for reaction of butane to isobutane. React Kinet Catal Lett, 2004, 81: 321-326
CrossRef
Google scholar
|
[30] |
Yang S J, Guo H F, Yan P, Wu Y N. Characterization of solid super acid Zr(SO4)2–/TiO2. Journal of Zhao Qing University, 2006, 27: 39-42 (in Chinese)
|
[31] |
Solinas V, Ferino I. Microcalorimetric characterisation of acid ± basic catalysts. Catal Today, 1998, 41: 179-189
CrossRef
Google scholar
|
[32] |
Spiewak B E, Dumesic J A. Microcalorimetric measurements of differential heats of adsorption on reactive catalyst surfaces. Thermochim Acta, 1996, 290: 43-53
CrossRef
Google scholar
|
[33] |
Brian E S, James A D. Applications of adsorption microcalorimetry for the characterization of metal-based catalysts. Thermochim Acta, 1998, 312: 95-104
CrossRef
Google scholar
|
[34] |
Auroux A, Datka J. Microcalorimetric and IR spectroscopic studies of pyridine sorption in NaH-mordenites. Appl Catal A, General, 1997, 165: 473-479
CrossRef
Google scholar
|
[35] |
Yeoh F Y, Matsumoto A, Iwase Y, Baba T. Characterization of acidic property of sulfo-group functionalized microporous and mesoporous silica by adsorption microcalorimetry. Catal Today, 2008, 132: 46-51
CrossRef
Google scholar
|
[36] |
Morterra C, Magnacca G. A case study: surface chemistry and surface structure of catalytic aluminas, as studied by vibrational spectroscopy of adsorbed species. Catal Today, 1996, 27: 497-532
CrossRef
Google scholar
|
[37] |
Shimizu K, Sunagawa T, Vera C R, Ukegawa K. Catalytic activity for synthesis of isomerized products from benzene over platinum-supported sulfated zirconia. Appl Catal A, General, 2001, 206: 79-86
CrossRef
Google scholar
|
[38] |
Wang X C, Yu J C, Liu P, Wang X X, Su W Y, Fu X Z. Probing of photocatalytic surface sites on
CrossRef
Google scholar
|
[39] |
Wu Y N, Guo H F, Cui X L. Studies of solid super acid catalyst
|
[40] |
Chen W H, Ko H H, Sakthivel A, Huang S J, Liu S H, Lo A Y, Tsai T C, Liu S B. A solid-state NMR, FTIR and TPD study on acid properties of sulfated and metal-promoted zirconia: Influence of promoter and sulfation treatment. Catal Today, 2006, 116: 111-120
CrossRef
Google scholar
|
[41] |
Jin T, Yamaguchi T, Tanabe K. Mechanism of acidity generation on sulfur-promoted metal oxides. J Phys Chem, 1986, 90: 4194-4196
CrossRef
Google scholar
|
[42] |
Matsuhashi H, Arata K. Temperature programmed desorption of argon for evaluation of surface acidity of solid superacids. Chem Commun, 2000, 5: 387-388
CrossRef
Google scholar
|
[43] |
Matsuhashi H, Sato D, Arata K. Influence of calcination temperature on the surface acidity of the solid superacid of sulfated alumina. React Kinet Catal Lett, 2004, 81: 183-188
CrossRef
Google scholar
|
[44] |
Matsuhashi H, Tanaka T, Arata K. Measurement of heat of argon adsorption for the evaluation of relative acid strength of some sulfated metal oxides and H-type zeolites. J Phys Chem B, 2001, 105: 9669-9671
CrossRef
Google scholar
|
[45] |
Arata K, Matsuhashi H, Hino M, Nakamura H. Synthesis of solid superacids and their activities for reactions of alkanes. Catal Today, 2003, 81: 17-30
CrossRef
Google scholar
|
[46] |
Matsuhashi H, Arata K. Measurement of the relative acid strength and acid amount of solid acids by argon adsorption. Phys Chem Chem Phys, 2004, 6: 2529-2533
CrossRef
Google scholar
|
[47] |
Matsuhashi H, Futamura A. Determination of relative acid strength and acid amount of solid acids by Ar adsorption. Catal Today, 2006, 111: 338-342
CrossRef
Google scholar
|
[48] |
Katada N, Endo J, Notsu K, Yasunobu N, Naito N, Niwa M. Superacidity and catalytic activity of sulfated zirconia. J Phys Chem B, 2000, 104: 10321-10328
CrossRef
Google scholar
|
[49] |
Sohn J R, Lim J S. Catalytic properties of NiSO4/ZrO2 promoted with Fe2O3 for acid catalysis. Mater Res Bull, 2006, 41: 1225-1241
CrossRef
Google scholar
|
[50] |
Lu G Z. Catalytic properties of
CrossRef
Google scholar
|
[51] |
Furuta S, Matsuhashi H, Arata K. Catalytic action of sulfated tin oxide for etherification and esterification in comparison with sulfated zirconia. Appl Catal A: General, 2004, 269: 187-191
CrossRef
Google scholar
|
[52] |
Hua W M, Miao C X, Chen J M, Gao Z. Temperature-programmed desorption of pyridine on solid superacids. Mater Chem Phys, 1996, 45: 220-222
CrossRef
Google scholar
|
[53] |
Umansky B S, Hall W K. A spectrophotometric study of the acidity of some solid acids. J Catal, 1990, 124: 97-108
CrossRef
Google scholar
|
[54] |
Morterra C, Cerrato G, Pinna F, Signoretto M. Crystal phase, spectral features, and catalytic activity of sulfate-doped zirconia systems. J Catal, 1995, 157: 109-123
CrossRef
Google scholar
|
[55] |
Hino M, Arata K. Superacids by metal oxides, IX. Catalysis of WO3/ZrO2 mechanically mixed with Pt/ZrO2 for reaction of butane to isobutane. Appl Catal A: General, 1998, 169: 151-155
CrossRef
Google scholar
|
[56] |
Lei T, Xu J S, Hua W M, Tang Y, Gao Z. High-activity catalyst of
CrossRef
Google scholar
|
[57] |
Gao Z, Chen J M, Hua W M, Tang Y. Characterization of solid superacidity the isomerization of butane. Stud Surf Sci Catal, 1994, 90: 507
|
[58] |
Wu Y N, Guo H F, Cui X L. Preparation and catalytic activity of rare earth solid super acid catalyst
|
[59] |
Sahebdelfara S, Kazemeinia M, Khorasheha F, Badakhshanb A. Deactivation behavior of the catalyst in solid acid catalyzed alkylation: effect of pore mouth plugging. Chem Eng Sci, 2002, 57: 3611-3620.
CrossRef
Google scholar
|
[60] |
Corma A. Solid acid catalysts. Current Opinion in Solid State and Materials Science. 1997, 2(1), 63-75
CrossRef
Google scholar
|
[61] |
Subramaniam B, Arunajatesan V, Lyon C J. Coking of solid acid catalysts and strategies for enhancing their activity. Stud Surf Sci Catal, 1999, 126: 63-77
CrossRef
Google scholar
|
[62] |
Ganapati D. Yadav, Omprakash V B. Selective acylation of 1,3-dibenzyloxybenzene to 3,5-dibenzyloxyacetophenone over cesium modified dodecatungstophosphoric acid (DTP) on clay. Appl Catal, A: General, 2008, 348: 16-25
CrossRef
Google scholar
|
[63] |
Cao C J, Liu X G, Liu Q. Preparation of aluminum and gallium promoted
|
[64] |
Li B, Gonzalez R D. TGA/FT-IR studies of the deactivation of sulfated zirconia catalysts. Appl Catal A, 1997, 165: 291-300
CrossRef
Google scholar
|
[65] |
Ganapati D Y, Ketan P P. Insight into Friedel-Crafts acylation of 1,4-dimethoxybenzene to 2,5-dimethoxyacetophenone catalysed by solid acids—mechanism, kinetics and remedies for deactivation. J Mol Catal A: Chem, 2007, 264: 179-191
CrossRef
Google scholar
|
[66] |
Risch M, Wolf E E. n-Butane and n-pentane isomerization over mesoporous and conventional sulfated zirconia catalysts. Catal Today, 2000, 62: 255-268
CrossRef
Google scholar
|
[67] |
Risch M, Wolf E E. Effect of the preparation of a mesoporous sulfated zirconia catalyst in n-butane isomerization activity. Appl Catal A: General, 2001, 206: 283-293
CrossRef
Google scholar
|
[68] |
Wu Y N, Guo H F, Cui X L. Studies on deactivation and regeneration of solid super acid catalyst
|
[69] |
Martínez F, Morales G, Martín N, Grieken R V. Perfluorinated Nafion-modified SBA-15 materials for catalytic acylation of anisole. Appl Catal A: General, 2008, 347: 169-178
CrossRef
Google scholar
|
[70] |
Hino M, Arata K. Superacids by metal oxides, X: Reaction of butane catalyzed by sulfated metal oxides, zeolites, or silica aluminas mixed with Pt-ZrO2. Appl Catal A: General, 1998, 173: 121-124
CrossRef
Google scholar
|
[71] |
Xia Y D, Hua W M, Tang Y, Gao Z. A highly active solid superacid catalyst for n-butane isomerization: persulfate modified Al2O3-ZrO2. Chem Commun, 1999, 18: 1899-1900
CrossRef
Google scholar
|
[72] |
Lei T, Xu J S, Tang Y, Hua W M, Gao Z. New solid superacid catalysts for n-butane isomerization: γ-Al2O3 or SiO2 supported sulfated zirconia. Appl Catal A: General, 2000, 192: 181-188
CrossRef
Google scholar
|
[73] |
Hino M, Arata K. Catalysis of ruthenium-metal oxides mechanically mixed with sulfated zirconia for reaction of butane to isobutane. React Kinet Catal Lett, 2000, 71: 71-76
CrossRef
Google scholar
|
[74] |
Xia Q H, K. Hidajat K, Kawi S. Synthesis of
CrossRef
Google scholar
|
[75] |
Wang W, Chen C L, Xu N P, Han S, Li T, Cheng S, Mou C Y. Well-dispersed gallium-promoted sulfated zirconia on mesoporous MCM-41 silica. Catal Letters, 2002, 83: 281-285.
CrossRef
Google scholar
|
[76] |
Sugi Y, Maekawa H, Hasegawa Y, Ito A, Asai R, Yamamoto D, Komura K, Kubota Y, Kim J H, Seo G. The alkylation of biphenyl over three-dimensional large pore zeolites: the influence of zeolite structure and alkylating agent on the selectivity for 4,4'-dialkylbiphenyl. Catal Today, 2008, 131: 413-422
CrossRef
Google scholar
|
[77] |
Bokade V V, Yadav G D. Heteropolyacid supported on acidic clay: a novel efficient catalyst for alkylation of ethylbenzene with dilute ethanol to diethylbenzene in presence of C8 aromatics. J Mol Catal A: Chem, 2008, 285: 155-161
CrossRef
Google scholar
|
[78] |
Ojha K, Pradhan N C, Samanta A N. Kinetics of batch alkylation of phenol with tert-butyl alcohol over a catalyst synthesized from coal fly ash. Chem Eng J, 2005, 112: 109-115
CrossRef
Google scholar
|
[79] |
Satoh K, Matsuhashi H, Arata K. Alkylation to form trimethylpentanes from isobutane and 1-butene catalyzed by solid superacids of sulfated metal oxides. Appl Catal A: General, 1999, 189: 35-43
CrossRef
Google scholar
|
[80] |
Yadav G D, Pathre G S. Chemoselective catalysis by sulphated zirconia in O-alkylation of guaiacol with cyclohexene. J Mol Catal A: Chem, 2006, 243: 77-84
CrossRef
Google scholar
|
[81] |
Yadav G D, Murkute A D. Preparation of the novel mesoporous solid acid catalyst UDCaT-4 via synergism of persulfated alumina and zirconia into hexagonal mesoporous silica for alkylation reactions. Adv Synth Catal, 2004, 346: 389-394
CrossRef
Google scholar
|
[82] |
Wang Z C. Gas chromatography-mass spectrometric analysis of the products of alkylation of benzene with benzylchloride catalyzed by
|
[83] |
Qiang Z, Jiao Q Z, Min E Z. Iso-butane/1-butene alkylation reaction and deactivation of superacid (
|
[84] |
Shibata T, Suzuki S, Kawagoe H, Komura K, Kubota Y, Sugi Y, Kim J H, Seo G. Synthetic investigation on MCM-68 zeolite with MSE topology and its application for shape-selective alkylation of biphenyl. Microporous Mesoporous Mater, 2008, 116: 216-226
CrossRef
Google scholar
|
[85] |
Sad M E, PadróC L, Apesteguía C R. Synthesis of cresols by alkylation of phenol with methanol on solid acids. Catal Today, 2008, 133-135: 720-728
CrossRef
Google scholar
|
[86] |
Jiang Y X, Chen X M, MoY F, TongZ F. Preparation and properties of Al-PILC supported
CrossRef
Google scholar
|
[86] |
Yang H, Lu R, Shen L C, Song L Z, Zhao J Z, Wang Z, Wang L. Preparation, characterization and catalytic activity of sulfated zirconia-silica nanocrystalline catalysts. Mater Lett, 2003, 57: 2572-2579
CrossRef
Google scholar
|
[87] |
Yang H, Lu R, Zhao J Z, Yang X W, Shen L C, Wang Z C. Sulfated binary oxide solid superacids. Mater Chem Phys, 2003, 80: 68-72
CrossRef
Google scholar
|
[88] |
BiróK, Békássy S, Ágai B, Figueras F. Heterogeneous catalysis for the acetylation of benzo crown ethers. J Mol Catal A: Chem, 2000, 151: 179-184
CrossRef
Google scholar
|
[89] |
Arata K, Nakamura H, Shouji M. Friedel-Crafts acylation of toluene catalyzed by solid superacids. Appl Cata A: General, 2000, 197: 213-219
CrossRef
Google scholar
|
[90] |
Reddy B M, Sreekanth P M, Yamada Y, Kobayashi T. Surface characterization and catalytic activity of sulfate-, molybdate- and tungstate-promoted Al2O3-ZrO2 solid acid catalysts. J Mol Catal A: Chem, 2005, 227: 81-89
CrossRef
Google scholar
|
[91] |
Reddy B M, Sreekanth P M, Reddy V R. Modified zirconia solid acid catalysts for organic synthesis and transformations. J Mol Catal A: Chem, 2005, 225: 71-78
CrossRef
Google scholar
|
[92] |
Sohn J R, Kwon T D, Kim S B. Characterization and acid catalytic properties of titanium sulfate supported on zirconia. J Ind Eng Chem, 2001, 7: 441-448
|
[93] |
Matsuhashi H, Miyazaki H, Kawamura Y, Nakamura H, Arata K. Preparation of a solid superacid of sulfated tin oxide with acidity higher than that of sulfated zirconia and its applications to aldol condensation and benzoylation. Chem Mater, 2001, 13: 3038-3042
CrossRef
Google scholar
|
[94] |
Reddy B M, Sreekanth P M. An efficient synthesis of 1,5-benzodiazepine derivatives catalyzed by a solid superacid sulfated zirconia. Tetrahedron Lett, 2003, 44: 4447-4449
CrossRef
Google scholar
|
[95] |
Nakajima A, Obata H, Kameshima Y, Okada K. Photocatalytic destruction of gaseous toluene by sulfated TiO2 powder. Catal Commun, 2005, 6: 716-720
CrossRef
Google scholar
|
[96] |
Muggli D S, Ding L F. Photocatalytic performance of sulfated TiO2 and Degussa P-25 TiO2 during oxidation of organics. Appl Catal B: Environ, 2001, 32: 181-194
CrossRef
Google scholar
|
[97] |
Colón G, Hidalgo M C, Munuera G, Ferino I, Cutrufello M G, Navío J A. Structural and surface approach to the enhanced photocatalytic activity of sulfated TiO2 photocatalyst. Appl Catal B: Environ, 2006, 63: 45-59
CrossRef
Google scholar
|
[98] |
Wang J, Wen X G, Wang M Q, Jiang P. Experimental research on photocatalytic degradation of dyestuff by
|
[99] |
Brei V V, Prudius S V, Melezhyk O V. Vapour-phase nitration of benzene over superacid WO3/ZrO2 catalysts. Appl Catal A: General, 2003, 239: 11-16
CrossRef
Google scholar
|
[100] |
Li W S, Shen Z Q, Zhang Y F. Activity and mechanism of rare earth solid superacid for initiating ring-opening polymerization of cholomethyl thiirane. Eur Polym J, 2001, 37: 1185-1190
CrossRef
Google scholar
|
[101] |
Khomenko T M, Korchagina D V, Barkhash V A. Rearrangements of epoxides of some acyclic terpenoids in acidic media. Russ J Org Chem, 2001, 37: 793-801
CrossRef
Google scholar
|
[102] |
Hua W M, Gao Z. Low-temperature catalytic combustion on
CrossRef
Google scholar
|
[103] |
Hua W M, Gao Z. Catalytic combustion of n-pentane on Pt supported on solid superacids. Appl Catal B: Environ, 1998, 17: 37-42
CrossRef
Google scholar
|
[104] |
Browna A S C, Hargreaves J S J, Taylor S H. The application of “superacidic” metal oxides and their platinum doped counterparts to methane combustion. Catal Today, 2000, 59: 403-409
CrossRef
Google scholar
|
[105] |
Zhu Z G, Wang B, Ma H Zh. Preparation of
CrossRef
Google scholar
|
[106] |
Ma H Z, Chen F T, Wang B, Zhuo Q F. Modified
CrossRef
Google scholar
|
[107] |
Chen F T, Ma H Z, Wang B. Cobalt modified solid superacid assisted electrochemical reaction of toluene with methanol. J Hazard Mater, 2007, 147: 964-970
CrossRef
Google scholar
|
[108] |
Wang Z C, Shui H F, Zhang D X, Gao J S. A comparison of FeS, FeS+S and solid superacid catalytic properties for coal hydro-liquefaction. Fuel, 2007, 86: 835-842
CrossRef
Google scholar
|
[109] |
Yin H L, Tan Z Y, Liao Y T, Feng Y J. Short communication application of
CrossRef
Google scholar
|
[110] |
Yu Zhang, Zhang H M, Zhai Y F, Zhu X B, Bi C. Investigation of self-humidifying membranes based on sulfonated poly(ether ether ketone) hybrid with sulfated zirconia supported Pt catalyst for fuel cell applications. J Power Sources, 2007, 168: 323-329
CrossRef
Google scholar
|
[111] |
Zhang Y, Zhang H M, Zhu X B, Bi C. Promotion of PEM self-humidifying effect by nanometer-sized sulfated zirconia-supported Pt catalyst hybrid with sulfonated poly(ether ether ketone). J Phys Chem B, 2007, 111: 6391-6399
CrossRef
Google scholar
|
[112] |
Reddy B M, Sreekanth P M, Lakshmanan P. Sulfated zirconia as an efficient catalyst for organic synthesis and transformation reactions. J Mol Catal A: Chem, 2005, 237: 93-100
CrossRef
Google scholar
|
[113] |
Hua W M, Goeppert A, Sommer J. Methane activation in the presence of Al2O3-promoted sulfated zirconia. Appl Catal A: General, 2001, 219: 201-207
CrossRef
Google scholar
|
[114] |
Wang B, Zhu J P, Ma H Z. Desulfurization from thiophene by
CrossRef
Google scholar
|
/
〈 |
|
〉 |