Review of
Yanni WU, Shijun LIAO
Review of
Some metal oxides modified with sulfate ions form highly acidic or superacidic catalysts. solid superacid catalysts, play a vital role in more and more fields such as organic synthesis, fine chemicals, pharmaceuticals, and means for strengthening environmental safeguards. This review highlights the recent development of solid superacid catalysts based on , including synthesis method, characterization of acid sites and acid strength, and applications.
solid superacid catalyst / synthesis method / characterization / applications
[1] |
Zheng A, Zhang H L, Chen L, Yue Y, Ye C H, Deng F. Relationship between 1H chemical shifts of deuterated pyridinium ions and Brønsted acid strength of solid acids. J Phys Chem B, 2007, 111: 3085-3089
CrossRef
Google scholar
|
[2] |
Farcasiu D, Lee K H. Isomerization of hexane by zeolite HZSM-5 the effect of cyclic hydrocarbons. J Mol Catal A: Chem, 2000, 161: 213-221
CrossRef
Google scholar
|
[3] |
Chaabene S B, Bergaoui L, Ghorbel A, Lambert J F, Grange P. In situ preparation of zirconium sulfate pillared clay: study of acidic properties. Appl Catal A, 2004, 268: 25-31
CrossRef
Google scholar
|
[4] |
Kim S Y, James G, Goodwin Jr, Dan Farcasiu. The effects of reaction conditions and catalyst deactivation on the mechanism of n-butane isomerization on sulfated zirconia. Appl Catal A, 2001, 207: 281-286
CrossRef
Google scholar
|
[5] |
David J Z, Alerasool S, Doolin P K. Characterization of catalytically active sulfated zirconia. Catal Today, 1999, 53: 419-432
CrossRef
Google scholar
|
[6] |
Samantaray S K, Parida K. Review: effect of anions on the textural and catalytic activity of titania-silica mixed oxide. J Mater Sci, 2004, 39: 3549-3562
CrossRef
Google scholar
|
[7] |
Salas P, Hernandez J G, Montoya J A. Effect of tin content on silica mixed oxides: sulfated and unsulfated catalysts. J Mol Catal A: Chem, 1997, 123: 149-154
CrossRef
Google scholar
|
[8] |
Sohn J R, Lee S H, Lim J S. New solid superacid catalyst prepared by doping ZrO2 with Ce and modifying with sulfate and its catalytic activity for acid catalysis. Catal Today, 2006, 116: 143-150
CrossRef
Google scholar
|
[9] |
Yadav G D, Pathre G S. Novel mesoporous solid superacids for selective C-alkylation of m-cresol with tert-butanol. Microporous Mesoporous Mater, 2006, 89: 16-24
CrossRef
Google scholar
|
[10] |
Yadav G D, George G. Friedel-Crafts acylation of anisole with propionic anhydride over mesoporous superacid catalyst UDCaT-5. Microporous Mesoporous Mater, 2006, 96: 36-43
CrossRef
Google scholar
|
[11] |
Yadav G D, Pimparkar K P. Insight into Friedel-Crafts acylation of 1,4-dimethoxybenzene to 2,5-dimethoxyacetophenone catalysed by solid acids—mechanism, kinetics and remedies for deactivation. J Mol Catal A: Chem, 2007, 264: 179-191
CrossRef
Google scholar
|
[12] |
Sohn J R, Dong C, Shin D C. Environmentally friendly solid acid catalyst prepared by modifying TiO2 with cerium sulfate for the removal of volatile organic chemicals. Appl Catal B, 2008, 77: 386-394
CrossRef
Google scholar
|
[13] |
Sohn J R, Lee S H, Lim J S. New solid superacid catalyst prepared by doping ZrO2 with Ce and modifying with sulfate and its catalytic activity for acid catalysis. Catal Today, 2006, 116: 143-150
CrossRef
Google scholar
|
[14] |
Zhou D Q, Yang J H, Dong G M, Huang M Y, Jiang Y Y. Solid superacid, silica-supported polytrifluoromethanesulfosiloxane catalyzed Friedel-Crafts benzylation of benzene and substituted benzenes. J Mol Catal A: Chem, 2000, 159: 85-87
CrossRef
Google scholar
|
[15] |
Matsuhashi H, Tanaka M, Nakamura H, Arata K. Formation of acid sites in ordered pores of FSM-16 by modification with sulfated zirconia. Appl Catal A-General, 2001, 208: 1-5
CrossRef
Google scholar
|
[16] |
Liao S J, Wang L F, Yang Z X, Yu W W, Huang Z T. Study on the superacid catalyst
|
[17] |
Sohn J R, Kim H W. Catalytic and surface properties of ZrO2 modified with sulfur compounds. J Mol Catal, 1989, 52: 361-368
CrossRef
Google scholar
|
[18] |
Wang J, Yang P P, Fan M Q, Yu W, Jing X Y, Zhang M L, Duan X. Preparation and characterization of novel magnetic ZrO2/TiO2/Fe3O4 solid superacid. Mater Lett, 2007, 61: 2235-2238
CrossRef
Google scholar
|
[19] |
Wu Y N, Guo H F, Cui X L. Study on the conditions of preparation of
|
[20] |
Guizard C G, Julbe A C, Ayral A. Design of nanosized structures in sol-gel derived porous solids. Applications in catalyst and inorganic membrane preparation. J Mater Chem, 1999, 9: 55-65
CrossRef
Google scholar
|
[21] |
Guevara-Franco M L, Robles-Andrades, García-Alamillaa R, Sandoval-Robles G, Domínguez-Esquivel J M. Study of n-hexane isomerization on mixed
CrossRef
Google scholar
|
[22] |
Zhao Q R, Wu C H, Bi Y M, Jiang J, Shi R, Qin H Y. Study on the synthesis of terpinyl acetate catalyzed by
|
[23] |
Guo H F, Zhu Z F, Yan P, Wu Y N, Li S M, Wang L Y. Synthesis of terpinyl acetate over
|
[24] |
Guo H F, Wang Z Z, Yang J C, Cui X L, Li X, Wu Y N. Characterization of
|
[25] |
Xu J H, Li X C, Li P, Cao X H.
|
[26] |
Wan Y, Ma J X, Zhou W, Zhu Y J, Song X Y, Lia H X. Preparation of titania-zirconia composite aerogel material by sol-gel combined with supercritical fluid drying. Appl Catal A-General, 2004, 277: 55-59
CrossRef
Google scholar
|
[27] |
Debra J M, Ronald A K. Tailoring the pore size of mesoporous sulfated zirconia. Microporous Mesoporous Mater, 2000, 37: 281-289
CrossRef
Google scholar
|
[28] |
Risch M, Wolf E E. Effect of the preparation of a mesoporous sulfated zirconia catalyst in n-butane isomerization activity. Appl Catal A, General, 2001, 206: 283-293
CrossRef
Google scholar
|
[29] |
Hino M, Arata K. One-step preparation of manganese-, iron-, and aluminum-promoted sulfated zirconias for reaction of butane to isobutane. React Kinet Catal Lett, 2004, 81: 321-326
CrossRef
Google scholar
|
[30] |
Yang S J, Guo H F, Yan P, Wu Y N. Characterization of solid super acid Zr(SO4)2–/TiO2. Journal of Zhao Qing University, 2006, 27: 39-42 (in Chinese)
|
[31] |
Solinas V, Ferino I. Microcalorimetric characterisation of acid ± basic catalysts. Catal Today, 1998, 41: 179-189
CrossRef
Google scholar
|
[32] |
Spiewak B E, Dumesic J A. Microcalorimetric measurements of differential heats of adsorption on reactive catalyst surfaces. Thermochim Acta, 1996, 290: 43-53
CrossRef
Google scholar
|
[33] |
Brian E S, James A D. Applications of adsorption microcalorimetry for the characterization of metal-based catalysts. Thermochim Acta, 1998, 312: 95-104
CrossRef
Google scholar
|
[34] |
Auroux A, Datka J. Microcalorimetric and IR spectroscopic studies of pyridine sorption in NaH-mordenites. Appl Catal A, General, 1997, 165: 473-479
CrossRef
Google scholar
|
[35] |
Yeoh F Y, Matsumoto A, Iwase Y, Baba T. Characterization of acidic property of sulfo-group functionalized microporous and mesoporous silica by adsorption microcalorimetry. Catal Today, 2008, 132: 46-51
CrossRef
Google scholar
|
[36] |
Morterra C, Magnacca G. A case study: surface chemistry and surface structure of catalytic aluminas, as studied by vibrational spectroscopy of adsorbed species. Catal Today, 1996, 27: 497-532
CrossRef
Google scholar
|
[37] |
Shimizu K, Sunagawa T, Vera C R, Ukegawa K. Catalytic activity for synthesis of isomerized products from benzene over platinum-supported sulfated zirconia. Appl Catal A, General, 2001, 206: 79-86
CrossRef
Google scholar
|
[38] |
Wang X C, Yu J C, Liu P, Wang X X, Su W Y, Fu X Z. Probing of photocatalytic surface sites on
CrossRef
Google scholar
|
[39] |
Wu Y N, Guo H F, Cui X L. Studies of solid super acid catalyst
|
[40] |
Chen W H, Ko H H, Sakthivel A, Huang S J, Liu S H, Lo A Y, Tsai T C, Liu S B. A solid-state NMR, FTIR and TPD study on acid properties of sulfated and metal-promoted zirconia: Influence of promoter and sulfation treatment. Catal Today, 2006, 116: 111-120
CrossRef
Google scholar
|
[41] |
Jin T, Yamaguchi T, Tanabe K. Mechanism of acidity generation on sulfur-promoted metal oxides. J Phys Chem, 1986, 90: 4194-4196
CrossRef
Google scholar
|
[42] |
Matsuhashi H, Arata K. Temperature programmed desorption of argon for evaluation of surface acidity of solid superacids. Chem Commun, 2000, 5: 387-388
CrossRef
Google scholar
|
[43] |
Matsuhashi H, Sato D, Arata K. Influence of calcination temperature on the surface acidity of the solid superacid of sulfated alumina. React Kinet Catal Lett, 2004, 81: 183-188
CrossRef
Google scholar
|
[44] |
Matsuhashi H, Tanaka T, Arata K. Measurement of heat of argon adsorption for the evaluation of relative acid strength of some sulfated metal oxides and H-type zeolites. J Phys Chem B, 2001, 105: 9669-9671
CrossRef
Google scholar
|
[45] |
Arata K, Matsuhashi H, Hino M, Nakamura H. Synthesis of solid superacids and their activities for reactions of alkanes. Catal Today, 2003, 81: 17-30
CrossRef
Google scholar
|
[46] |
Matsuhashi H, Arata K. Measurement of the relative acid strength and acid amount of solid acids by argon adsorption. Phys Chem Chem Phys, 2004, 6: 2529-2533
CrossRef
Google scholar
|
[47] |
Matsuhashi H, Futamura A. Determination of relative acid strength and acid amount of solid acids by Ar adsorption. Catal Today, 2006, 111: 338-342
CrossRef
Google scholar
|
[48] |
Katada N, Endo J, Notsu K, Yasunobu N, Naito N, Niwa M. Superacidity and catalytic activity of sulfated zirconia. J Phys Chem B, 2000, 104: 10321-10328
CrossRef
Google scholar
|
[49] |
Sohn J R, Lim J S. Catalytic properties of NiSO4/ZrO2 promoted with Fe2O3 for acid catalysis. Mater Res Bull, 2006, 41: 1225-1241
CrossRef
Google scholar
|
[50] |
Lu G Z. Catalytic properties of
CrossRef
Google scholar
|
[51] |
Furuta S, Matsuhashi H, Arata K. Catalytic action of sulfated tin oxide for etherification and esterification in comparison with sulfated zirconia. Appl Catal A: General, 2004, 269: 187-191
CrossRef
Google scholar
|
[52] |
Hua W M, Miao C X, Chen J M, Gao Z. Temperature-programmed desorption of pyridine on solid superacids. Mater Chem Phys, 1996, 45: 220-222
CrossRef
Google scholar
|
[53] |
Umansky B S, Hall W K. A spectrophotometric study of the acidity of some solid acids. J Catal, 1990, 124: 97-108
CrossRef
Google scholar
|
[54] |
Morterra C, Cerrato G, Pinna F, Signoretto M. Crystal phase, spectral features, and catalytic activity of sulfate-doped zirconia systems. J Catal, 1995, 157: 109-123
CrossRef
Google scholar
|
[55] |
Hino M, Arata K. Superacids by metal oxides, IX. Catalysis of WO3/ZrO2 mechanically mixed with Pt/ZrO2 for reaction of butane to isobutane. Appl Catal A: General, 1998, 169: 151-155
CrossRef
Google scholar
|
[56] |
Lei T, Xu J S, Hua W M, Tang Y, Gao Z. High-activity catalyst of
CrossRef
Google scholar
|
[57] |
Gao Z, Chen J M, Hua W M, Tang Y. Characterization of solid superacidity the isomerization of butane. Stud Surf Sci Catal, 1994, 90: 507
|
[58] |
Wu Y N, Guo H F, Cui X L. Preparation and catalytic activity of rare earth solid super acid catalyst
|
[59] |
Sahebdelfara S, Kazemeinia M, Khorasheha F, Badakhshanb A. Deactivation behavior of the catalyst in solid acid catalyzed alkylation: effect of pore mouth plugging. Chem Eng Sci, 2002, 57: 3611-3620.
CrossRef
Google scholar
|
[60] |
Corma A. Solid acid catalysts. Current Opinion in Solid State and Materials Science. 1997, 2(1), 63-75
CrossRef
Google scholar
|
[61] |
Subramaniam B, Arunajatesan V, Lyon C J. Coking of solid acid catalysts and strategies for enhancing their activity. Stud Surf Sci Catal, 1999, 126: 63-77
CrossRef
Google scholar
|
[62] |
Ganapati D. Yadav, Omprakash V B. Selective acylation of 1,3-dibenzyloxybenzene to 3,5-dibenzyloxyacetophenone over cesium modified dodecatungstophosphoric acid (DTP) on clay. Appl Catal, A: General, 2008, 348: 16-25
CrossRef
Google scholar
|
[63] |
Cao C J, Liu X G, Liu Q. Preparation of aluminum and gallium promoted
|
[64] |
Li B, Gonzalez R D. TGA/FT-IR studies of the deactivation of sulfated zirconia catalysts. Appl Catal A, 1997, 165: 291-300
CrossRef
Google scholar
|
[65] |
Ganapati D Y, Ketan P P. Insight into Friedel-Crafts acylation of 1,4-dimethoxybenzene to 2,5-dimethoxyacetophenone catalysed by solid acids—mechanism, kinetics and remedies for deactivation. J Mol Catal A: Chem, 2007, 264: 179-191
CrossRef
Google scholar
|
[66] |
Risch M, Wolf E E. n-Butane and n-pentane isomerization over mesoporous and conventional sulfated zirconia catalysts. Catal Today, 2000, 62: 255-268
CrossRef
Google scholar
|
[67] |
Risch M, Wolf E E. Effect of the preparation of a mesoporous sulfated zirconia catalyst in n-butane isomerization activity. Appl Catal A: General, 2001, 206: 283-293
CrossRef
Google scholar
|
[68] |
Wu Y N, Guo H F, Cui X L. Studies on deactivation and regeneration of solid super acid catalyst
|
[69] |
Martínez F, Morales G, Martín N, Grieken R V. Perfluorinated Nafion-modified SBA-15 materials for catalytic acylation of anisole. Appl Catal A: General, 2008, 347: 169-178
CrossRef
Google scholar
|
[70] |
Hino M, Arata K. Superacids by metal oxides, X: Reaction of butane catalyzed by sulfated metal oxides, zeolites, or silica aluminas mixed with Pt-ZrO2. Appl Catal A: General, 1998, 173: 121-124
CrossRef
Google scholar
|
[71] |
Xia Y D, Hua W M, Tang Y, Gao Z. A highly active solid superacid catalyst for n-butane isomerization: persulfate modified Al2O3-ZrO2. Chem Commun, 1999, 18: 1899-1900
CrossRef
Google scholar
|
[72] |
Lei T, Xu J S, Tang Y, Hua W M, Gao Z. New solid superacid catalysts for n-butane isomerization: γ-Al2O3 or SiO2 supported sulfated zirconia. Appl Catal A: General, 2000, 192: 181-188
CrossRef
Google scholar
|
[73] |
Hino M, Arata K. Catalysis of ruthenium-metal oxides mechanically mixed with sulfated zirconia for reaction of butane to isobutane. React Kinet Catal Lett, 2000, 71: 71-76
CrossRef
Google scholar
|
[74] |
Xia Q H, K. Hidajat K, Kawi S. Synthesis of
CrossRef
Google scholar
|
[75] |
Wang W, Chen C L, Xu N P, Han S, Li T, Cheng S, Mou C Y. Well-dispersed gallium-promoted sulfated zirconia on mesoporous MCM-41 silica. Catal Letters, 2002, 83: 281-285.
CrossRef
Google scholar
|
[76] |
Sugi Y, Maekawa H, Hasegawa Y, Ito A, Asai R, Yamamoto D, Komura K, Kubota Y, Kim J H, Seo G. The alkylation of biphenyl over three-dimensional large pore zeolites: the influence of zeolite structure and alkylating agent on the selectivity for 4,4'-dialkylbiphenyl. Catal Today, 2008, 131: 413-422
CrossRef
Google scholar
|
[77] |
Bokade V V, Yadav G D. Heteropolyacid supported on acidic clay: a novel efficient catalyst for alkylation of ethylbenzene with dilute ethanol to diethylbenzene in presence of C8 aromatics. J Mol Catal A: Chem, 2008, 285: 155-161
CrossRef
Google scholar
|
[78] |
Ojha K, Pradhan N C, Samanta A N. Kinetics of batch alkylation of phenol with tert-butyl alcohol over a catalyst synthesized from coal fly ash. Chem Eng J, 2005, 112: 109-115
CrossRef
Google scholar
|
[79] |
Satoh K, Matsuhashi H, Arata K. Alkylation to form trimethylpentanes from isobutane and 1-butene catalyzed by solid superacids of sulfated metal oxides. Appl Catal A: General, 1999, 189: 35-43
CrossRef
Google scholar
|
[80] |
Yadav G D, Pathre G S. Chemoselective catalysis by sulphated zirconia in O-alkylation of guaiacol with cyclohexene. J Mol Catal A: Chem, 2006, 243: 77-84
CrossRef
Google scholar
|
[81] |
Yadav G D, Murkute A D. Preparation of the novel mesoporous solid acid catalyst UDCaT-4 via synergism of persulfated alumina and zirconia into hexagonal mesoporous silica for alkylation reactions. Adv Synth Catal, 2004, 346: 389-394
CrossRef
Google scholar
|
[82] |
Wang Z C. Gas chromatography-mass spectrometric analysis of the products of alkylation of benzene with benzylchloride catalyzed by
|
[83] |
Qiang Z, Jiao Q Z, Min E Z. Iso-butane/1-butene alkylation reaction and deactivation of superacid (
|
[84] |
Shibata T, Suzuki S, Kawagoe H, Komura K, Kubota Y, Sugi Y, Kim J H, Seo G. Synthetic investigation on MCM-68 zeolite with MSE topology and its application for shape-selective alkylation of biphenyl. Microporous Mesoporous Mater, 2008, 116: 216-226
CrossRef
Google scholar
|
[85] |
Sad M E, PadróC L, Apesteguía C R. Synthesis of cresols by alkylation of phenol with methanol on solid acids. Catal Today, 2008, 133-135: 720-728
CrossRef
Google scholar
|
[86] |
Jiang Y X, Chen X M, MoY F, TongZ F. Preparation and properties of Al-PILC supported
CrossRef
Google scholar
|
[86] |
Yang H, Lu R, Shen L C, Song L Z, Zhao J Z, Wang Z, Wang L. Preparation, characterization and catalytic activity of sulfated zirconia-silica nanocrystalline catalysts. Mater Lett, 2003, 57: 2572-2579
CrossRef
Google scholar
|
[87] |
Yang H, Lu R, Zhao J Z, Yang X W, Shen L C, Wang Z C. Sulfated binary oxide solid superacids. Mater Chem Phys, 2003, 80: 68-72
CrossRef
Google scholar
|
[88] |
BiróK, Békássy S, Ágai B, Figueras F. Heterogeneous catalysis for the acetylation of benzo crown ethers. J Mol Catal A: Chem, 2000, 151: 179-184
CrossRef
Google scholar
|
[89] |
Arata K, Nakamura H, Shouji M. Friedel-Crafts acylation of toluene catalyzed by solid superacids. Appl Cata A: General, 2000, 197: 213-219
CrossRef
Google scholar
|
[90] |
Reddy B M, Sreekanth P M, Yamada Y, Kobayashi T. Surface characterization and catalytic activity of sulfate-, molybdate- and tungstate-promoted Al2O3-ZrO2 solid acid catalysts. J Mol Catal A: Chem, 2005, 227: 81-89
CrossRef
Google scholar
|
[91] |
Reddy B M, Sreekanth P M, Reddy V R. Modified zirconia solid acid catalysts for organic synthesis and transformations. J Mol Catal A: Chem, 2005, 225: 71-78
CrossRef
Google scholar
|
[92] |
Sohn J R, Kwon T D, Kim S B. Characterization and acid catalytic properties of titanium sulfate supported on zirconia. J Ind Eng Chem, 2001, 7: 441-448
|
[93] |
Matsuhashi H, Miyazaki H, Kawamura Y, Nakamura H, Arata K. Preparation of a solid superacid of sulfated tin oxide with acidity higher than that of sulfated zirconia and its applications to aldol condensation and benzoylation. Chem Mater, 2001, 13: 3038-3042
CrossRef
Google scholar
|
[94] |
Reddy B M, Sreekanth P M. An efficient synthesis of 1,5-benzodiazepine derivatives catalyzed by a solid superacid sulfated zirconia. Tetrahedron Lett, 2003, 44: 4447-4449
CrossRef
Google scholar
|
[95] |
Nakajima A, Obata H, Kameshima Y, Okada K. Photocatalytic destruction of gaseous toluene by sulfated TiO2 powder. Catal Commun, 2005, 6: 716-720
CrossRef
Google scholar
|
[96] |
Muggli D S, Ding L F. Photocatalytic performance of sulfated TiO2 and Degussa P-25 TiO2 during oxidation of organics. Appl Catal B: Environ, 2001, 32: 181-194
CrossRef
Google scholar
|
[97] |
Colón G, Hidalgo M C, Munuera G, Ferino I, Cutrufello M G, Navío J A. Structural and surface approach to the enhanced photocatalytic activity of sulfated TiO2 photocatalyst. Appl Catal B: Environ, 2006, 63: 45-59
CrossRef
Google scholar
|
[98] |
Wang J, Wen X G, Wang M Q, Jiang P. Experimental research on photocatalytic degradation of dyestuff by
|
[99] |
Brei V V, Prudius S V, Melezhyk O V. Vapour-phase nitration of benzene over superacid WO3/ZrO2 catalysts. Appl Catal A: General, 2003, 239: 11-16
CrossRef
Google scholar
|
[100] |
Li W S, Shen Z Q, Zhang Y F. Activity and mechanism of rare earth solid superacid for initiating ring-opening polymerization of cholomethyl thiirane. Eur Polym J, 2001, 37: 1185-1190
CrossRef
Google scholar
|
[101] |
Khomenko T M, Korchagina D V, Barkhash V A. Rearrangements of epoxides of some acyclic terpenoids in acidic media. Russ J Org Chem, 2001, 37: 793-801
CrossRef
Google scholar
|
[102] |
Hua W M, Gao Z. Low-temperature catalytic combustion on
CrossRef
Google scholar
|
[103] |
Hua W M, Gao Z. Catalytic combustion of n-pentane on Pt supported on solid superacids. Appl Catal B: Environ, 1998, 17: 37-42
CrossRef
Google scholar
|
[104] |
Browna A S C, Hargreaves J S J, Taylor S H. The application of “superacidic” metal oxides and their platinum doped counterparts to methane combustion. Catal Today, 2000, 59: 403-409
CrossRef
Google scholar
|
[105] |
Zhu Z G, Wang B, Ma H Zh. Preparation of
CrossRef
Google scholar
|
[106] |
Ma H Z, Chen F T, Wang B, Zhuo Q F. Modified
CrossRef
Google scholar
|
[107] |
Chen F T, Ma H Z, Wang B. Cobalt modified solid superacid assisted electrochemical reaction of toluene with methanol. J Hazard Mater, 2007, 147: 964-970
CrossRef
Google scholar
|
[108] |
Wang Z C, Shui H F, Zhang D X, Gao J S. A comparison of FeS, FeS+S and solid superacid catalytic properties for coal hydro-liquefaction. Fuel, 2007, 86: 835-842
CrossRef
Google scholar
|
[109] |
Yin H L, Tan Z Y, Liao Y T, Feng Y J. Short communication application of
CrossRef
Google scholar
|
[110] |
Yu Zhang, Zhang H M, Zhai Y F, Zhu X B, Bi C. Investigation of self-humidifying membranes based on sulfonated poly(ether ether ketone) hybrid with sulfated zirconia supported Pt catalyst for fuel cell applications. J Power Sources, 2007, 168: 323-329
CrossRef
Google scholar
|
[111] |
Zhang Y, Zhang H M, Zhu X B, Bi C. Promotion of PEM self-humidifying effect by nanometer-sized sulfated zirconia-supported Pt catalyst hybrid with sulfonated poly(ether ether ketone). J Phys Chem B, 2007, 111: 6391-6399
CrossRef
Google scholar
|
[112] |
Reddy B M, Sreekanth P M, Lakshmanan P. Sulfated zirconia as an efficient catalyst for organic synthesis and transformation reactions. J Mol Catal A: Chem, 2005, 237: 93-100
CrossRef
Google scholar
|
[113] |
Hua W M, Goeppert A, Sommer J. Methane activation in the presence of Al2O3-promoted sulfated zirconia. Appl Catal A: General, 2001, 219: 201-207
CrossRef
Google scholar
|
[114] |
Wang B, Zhu J P, Ma H Z. Desulfurization from thiophene by
CrossRef
Google scholar
|
/
〈 | 〉 |