Review of SO42-/MxOy solid superacid catalysts

Yanni WU, Shijun LIAO

PDF(218 KB)
PDF(218 KB)
Front. Chem. Sci. Eng. ›› 2009, Vol. 3 ›› Issue (3) : 330-343. DOI: 10.1007/s11705-009-0208-3
REVIEW ARTICLE
REVIEW ARTICLE

Review of SO42-/MxOy solid superacid catalysts

Author information +
History +

Abstract

Some metal oxides modified with sulfate ions form highly acidic or superacidic catalysts. SO42-/MxOy solid superacid catalysts, play a vital role in more and more fields such as organic synthesis, fine chemicals, pharmaceuticals, and means for strengthening environmental safeguards. This review highlights the recent development of solid superacid catalysts based on SO42-/MxOy, including synthesis method, characterization of acid sites and acid strength, and applications.

Keywords

solid superacid catalyst / synthesis method / characterization / applications

Cite this article

Download citation ▾
Yanni WU, Shijun LIAO. Review of SO42-/MxOy solid superacid catalysts. Front Chem Eng Chin, 2009, 3(3): 330‒343 https://doi.org/10.1007/s11705-009-0208-3

References

[1]
Zheng A, Zhang H L, Chen L, Yue Y, Ye C H, Deng F. Relationship between 1H chemical shifts of deuterated pyridinium ions and Brønsted acid strength of solid acids. J Phys Chem B, 2007, 111: 3085-3089
CrossRef Google scholar
[2]
Farcasiu D, Lee K H. Isomerization of hexane by zeolite HZSM-5 the effect of cyclic hydrocarbons. J Mol Catal A: Chem, 2000, 161: 213-221
CrossRef Google scholar
[3]
Chaabene S B, Bergaoui L, Ghorbel A, Lambert J F, Grange P. In situ preparation of zirconium sulfate pillared clay: study of acidic properties. Appl Catal A, 2004, 268: 25-31
CrossRef Google scholar
[4]
Kim S Y, James G, Goodwin Jr, Dan Farcasiu. The effects of reaction conditions and catalyst deactivation on the mechanism of n-butane isomerization on sulfated zirconia. Appl Catal A, 2001, 207: 281-286
CrossRef Google scholar
[5]
David J Z, Alerasool S, Doolin P K. Characterization of catalytically active sulfated zirconia. Catal Today, 1999, 53: 419-432
CrossRef Google scholar
[6]
Samantaray S K, Parida K. Review: effect of anions on the textural and catalytic activity of titania-silica mixed oxide. J Mater Sci, 2004, 39: 3549-3562
CrossRef Google scholar
[7]
Salas P, Hernandez J G, Montoya J A. Effect of tin content on silica mixed oxides: sulfated and unsulfated catalysts. J Mol Catal A: Chem, 1997, 123: 149-154
CrossRef Google scholar
[8]
Sohn J R, Lee S H, Lim J S. New solid superacid catalyst prepared by doping ZrO2 with Ce and modifying with sulfate and its catalytic activity for acid catalysis. Catal Today, 2006, 116: 143-150
CrossRef Google scholar
[9]
Yadav G D, Pathre G S. Novel mesoporous solid superacids for selective C-alkylation of m-cresol with tert-butanol. Microporous Mesoporous Mater, 2006, 89: 16-24
CrossRef Google scholar
[10]
Yadav G D, George G. Friedel-Crafts acylation of anisole with propionic anhydride over mesoporous superacid catalyst UDCaT-5. Microporous Mesoporous Mater, 2006, 96: 36-43
CrossRef Google scholar
[11]
Yadav G D, Pimparkar K P. Insight into Friedel-Crafts acylation of 1,4-dimethoxybenzene to 2,5-dimethoxyacetophenone catalysed by solid acids—mechanism, kinetics and remedies for deactivation. J Mol Catal A: Chem, 2007, 264: 179-191
CrossRef Google scholar
[12]
Sohn J R, Dong C, Shin D C. Environmentally friendly solid acid catalyst prepared by modifying TiO2 with cerium sulfate for the removal of volatile organic chemicals. Appl Catal B, 2008, 77: 386-394
CrossRef Google scholar
[13]
Sohn J R, Lee S H, Lim J S. New solid superacid catalyst prepared by doping ZrO2 with Ce and modifying with sulfate and its catalytic activity for acid catalysis. Catal Today, 2006, 116: 143-150
CrossRef Google scholar
[14]
Zhou D Q, Yang J H, Dong G M, Huang M Y, Jiang Y Y. Solid superacid, silica-supported polytrifluoromethanesulfosiloxane catalyzed Friedel-Crafts benzylation of benzene and substituted benzenes. J Mol Catal A: Chem, 2000, 159: 85-87
CrossRef Google scholar
[15]
Matsuhashi H, Tanaka M, Nakamura H, Arata K. Formation of acid sites in ordered pores of FSM-16 by modification with sulfated zirconia. Appl Catal A-General, 2001, 208: 1-5
CrossRef Google scholar
[16]
Liao S J, Wang L F, Yang Z X, Yu W W, Huang Z T. Study on the superacid catalyst SO42-/ZrO2-SiO2(Ⅰ) —preparation and activity for esterification of acetic acid with butanol. J South China University of Technology (Natural Science Edition), 2001, 1: 56-60 (in Chinese)
[17]
Sohn J R, Kim H W. Catalytic and surface properties of ZrO2 modified with sulfur compounds. J Mol Catal, 1989, 52: 361-368
CrossRef Google scholar
[18]
Wang J, Yang P P, Fan M Q, Yu W, Jing X Y, Zhang M L, Duan X. Preparation and characterization of novel magnetic ZrO2/TiO2/Fe3O4 solid superacid. Mater Lett, 2007, 61: 2235-2238
CrossRef Google scholar
[19]
Wu Y N, Guo H F, Cui X L. Study on the conditions of preparation of S2O82-/ZrO2-SiO2 like solid super acid catalysts. Acta Scientiarum Naturalium Universitatis Neimongol, 2006, 1: 117-120 (in Chinese)
[20]
Guizard C G, Julbe A C, Ayral A. Design of nanosized structures in sol-gel derived porous solids. Applications in catalyst and inorganic membrane preparation. J Mater Chem, 1999, 9: 55-65
CrossRef Google scholar
[21]
Guevara-Franco M L, Robles-Andrades, García-Alamillaa R, Sandoval-Robles G, Domínguez-Esquivel J M. Study of n-hexane isomerization on mixed Al2O3-ZrO2/SO42- catalysts. Catal Today, 2001, 65: 137-141
CrossRef Google scholar
[22]
Zhao Q R, Wu C H, Bi Y M, Jiang J, Shi R, Qin H Y. Study on the synthesis of terpinyl acetate catalyzed by SO42-/SnO2-TiO2 solid superacid. J Chem Res Appl, 2006, 5: 510-514
[23]
Guo H F, Zhu Z F, Yan P, Wu Y N, Li S M, Wang L Y. Synthesis of terpinyl acetate over SO42-/SnO2-CeO2 solid superacid catalyst. Pet Technol, 2007, 6: 565-569 (in Chinese)
[24]
Guo H F, Wang Z Z, Yang J C, Cui X L, Li X, Wu Y N. Characterization of SO42-/SnO2-SiO2 solid superacid prepared by double hydrolyzation. Journal of Chemical World, 2007, 6: 324-326, 344 (in Chinese)
[25]
Xu J H, Li X C, Li P, Cao X H. SO42-/ZrO2 Solid acid catalyst prepared by hydrothermal method and its application in the synthesis of N-butyl acetate. Journal of Nanchang University (Engineering & Technology), 2007, 2: 106-109 (in Chinese)
[26]
Wan Y, Ma J X, Zhou W, Zhu Y J, Song X Y, Lia H X. Preparation of titania-zirconia composite aerogel material by sol-gel combined with supercritical fluid drying. Appl Catal A-General, 2004, 277: 55-59
CrossRef Google scholar
[27]
Debra J M, Ronald A K. Tailoring the pore size of mesoporous sulfated zirconia. Microporous Mesoporous Mater, 2000, 37: 281-289
CrossRef Google scholar
[28]
Risch M, Wolf E E. Effect of the preparation of a mesoporous sulfated zirconia catalyst in n-butane isomerization activity. Appl Catal A, General, 2001, 206: 283-293
CrossRef Google scholar
[29]
Hino M, Arata K. One-step preparation of manganese-, iron-, and aluminum-promoted sulfated zirconias for reaction of butane to isobutane. React Kinet Catal Lett, 2004, 81: 321-326
CrossRef Google scholar
[30]
Yang S J, Guo H F, Yan P, Wu Y N. Characterization of solid super acid Zr(SO4)2–/TiO2. Journal of Zhao Qing University, 2006, 27: 39-42 (in Chinese)
[31]
Solinas V, Ferino I. Microcalorimetric characterisation of acid ± basic catalysts. Catal Today, 1998, 41: 179-189
CrossRef Google scholar
[32]
Spiewak B E, Dumesic J A. Microcalorimetric measurements of differential heats of adsorption on reactive catalyst surfaces. Thermochim Acta, 1996, 290: 43-53
CrossRef Google scholar
[33]
Brian E S, James A D. Applications of adsorption microcalorimetry for the characterization of metal-based catalysts. Thermochim Acta, 1998, 312: 95-104
CrossRef Google scholar
[34]
Auroux A, Datka J. Microcalorimetric and IR spectroscopic studies of pyridine sorption in NaH-mordenites. Appl Catal A, General, 1997, 165: 473-479
CrossRef Google scholar
[35]
Yeoh F Y, Matsumoto A, Iwase Y, Baba T. Characterization of acidic property of sulfo-group functionalized microporous and mesoporous silica by adsorption microcalorimetry. Catal Today, 2008, 132: 46-51
CrossRef Google scholar
[36]
Morterra C, Magnacca G. A case study: surface chemistry and surface structure of catalytic aluminas, as studied by vibrational spectroscopy of adsorbed species. Catal Today, 1996, 27: 497-532
CrossRef Google scholar
[37]
Shimizu K, Sunagawa T, Vera C R, Ukegawa K. Catalytic activity for synthesis of isomerized products from benzene over platinum-supported sulfated zirconia. Appl Catal A, General, 2001, 206: 79-86
CrossRef Google scholar
[38]
Wang X C, Yu J C, Liu P, Wang X X, Su W Y, Fu X Z. Probing of photocatalytic surface sites on SO42-/TiO2 solid acids by in situ FTIR spectroscopy and pyridine adsorption. J Photochem Photobiol A: Chem, 2006, 179: 339-347
CrossRef Google scholar
[39]
Wu Y N, Guo H F, Cui X L. Studies of solid super acid catalyst S2O82-/ZrO2-SiO2 characterization of acidity. Acta Scientiarum Naturalium Universitatis Neimongo, 2005, 36: 265-269 (in Chinese)
[40]
Chen W H, Ko H H, Sakthivel A, Huang S J, Liu S H, Lo A Y, Tsai T C, Liu S B. A solid-state NMR, FTIR and TPD study on acid properties of sulfated and metal-promoted zirconia: Influence of promoter and sulfation treatment. Catal Today, 2006, 116: 111-120
CrossRef Google scholar
[41]
Jin T, Yamaguchi T, Tanabe K. Mechanism of acidity generation on sulfur-promoted metal oxides. J Phys Chem, 1986, 90: 4194-4196
CrossRef Google scholar
[42]
Matsuhashi H, Arata K. Temperature programmed desorption of argon for evaluation of surface acidity of solid superacids. Chem Commun, 2000, 5: 387-388
CrossRef Google scholar
[43]
Matsuhashi H, Sato D, Arata K. Influence of calcination temperature on the surface acidity of the solid superacid of sulfated alumina. React Kinet Catal Lett, 2004, 81: 183-188
CrossRef Google scholar
[44]
Matsuhashi H, Tanaka T, Arata K. Measurement of heat of argon adsorption for the evaluation of relative acid strength of some sulfated metal oxides and H-type zeolites. J Phys Chem B, 2001, 105: 9669-9671
CrossRef Google scholar
[45]
Arata K, Matsuhashi H, Hino M, Nakamura H. Synthesis of solid superacids and their activities for reactions of alkanes. Catal Today, 2003, 81: 17-30
CrossRef Google scholar
[46]
Matsuhashi H, Arata K. Measurement of the relative acid strength and acid amount of solid acids by argon adsorption. Phys Chem Chem Phys, 2004, 6: 2529-2533
CrossRef Google scholar
[47]
Matsuhashi H, Futamura A. Determination of relative acid strength and acid amount of solid acids by Ar adsorption. Catal Today, 2006, 111: 338-342
CrossRef Google scholar
[48]
Katada N, Endo J, Notsu K, Yasunobu N, Naito N, Niwa M. Superacidity and catalytic activity of sulfated zirconia. J Phys Chem B, 2000, 104: 10321-10328
CrossRef Google scholar
[49]
Sohn J R, Lim J S. Catalytic properties of NiSO4/ZrO2 promoted with Fe2O3 for acid catalysis. Mater Res Bull, 2006, 41: 1225-1241
CrossRef Google scholar
[50]
Lu G Z. Catalytic properties of SO42-/Ti-M-O superacids in esterification. Appl Catal A: General, 1995, 133: 11-18
CrossRef Google scholar
[51]
Furuta S, Matsuhashi H, Arata K. Catalytic action of sulfated tin oxide for etherification and esterification in comparison with sulfated zirconia. Appl Catal A: General, 2004, 269: 187-191
CrossRef Google scholar
[52]
Hua W M, Miao C X, Chen J M, Gao Z. Temperature-programmed desorption of pyridine on solid superacids. Mater Chem Phys, 1996, 45: 220-222
CrossRef Google scholar
[53]
Umansky B S, Hall W K. A spectrophotometric study of the acidity of some solid acids. J Catal, 1990, 124: 97-108
CrossRef Google scholar
[54]
Morterra C, Cerrato G, Pinna F, Signoretto M. Crystal phase, spectral features, and catalytic activity of sulfate-doped zirconia systems. J Catal, 1995, 157: 109-123
CrossRef Google scholar
[55]
Hino M, Arata K. Superacids by metal oxides, IX. Catalysis of WO3/ZrO2 mechanically mixed with Pt/ZrO2 for reaction of butane to isobutane. Appl Catal A: General, 1998, 169: 151-155
CrossRef Google scholar
[56]
Lei T, Xu J S, Hua W M, Tang Y, Gao Z. High-activity catalyst of SO42-/ZrO2 supported on-Al2O3 for n-butane isomerization. Catal Lett, 1999, 61: 213-218
CrossRef Google scholar
[57]
Gao Z, Chen J M, Hua W M, Tang Y. Characterization of solid superacidity the isomerization of butane. Stud Surf Sci Catal, 1994, 90: 507
[58]
Wu Y N, Guo H F, Cui X L. Preparation and catalytic activity of rare earth solid super acid catalyst S2O82-/ZrO2-SiO2-Sm2O3. J Chin Rare Earths, 2006, 27: 8-11 (in Chinese)
[59]
Sahebdelfara S, Kazemeinia M, Khorasheha F, Badakhshanb A. Deactivation behavior of the catalyst in solid acid catalyzed alkylation: effect of pore mouth plugging. Chem Eng Sci, 2002, 57: 3611-3620.
CrossRef Google scholar
[60]
Corma A. Solid acid catalysts. Current Opinion in Solid State and Materials Science. 1997, 2(1), 63-75
CrossRef Google scholar
[61]
Subramaniam B, Arunajatesan V, Lyon C J. Coking of solid acid catalysts and strategies for enhancing their activity. Stud Surf Sci Catal, 1999, 126: 63-77
CrossRef Google scholar
[62]
Ganapati D. Yadav, Omprakash V B. Selective acylation of 1,3-dibenzyloxybenzene to 3,5-dibenzyloxyacetophenone over cesium modified dodecatungstophosphoric acid (DTP) on clay. Appl Catal, A: General, 2008, 348: 16-25
CrossRef Google scholar
[63]
Cao C J, Liu X G, Liu Q. Preparation of aluminum and gallium promoted SO42-/ZrO2 and its catalytic activity for esterification. Chin J Appl Chem Ind, 2007, 36: 11-14 (in Chinese)
[64]
Li B, Gonzalez R D. TGA/FT-IR studies of the deactivation of sulfated zirconia catalysts. Appl Catal A, 1997, 165: 291-300
CrossRef Google scholar
[65]
Ganapati D Y, Ketan P P. Insight into Friedel-Crafts acylation of 1,4-dimethoxybenzene to 2,5-dimethoxyacetophenone catalysed by solid acids—mechanism, kinetics and remedies for deactivation. J Mol Catal A: Chem, 2007, 264: 179-191
CrossRef Google scholar
[66]
Risch M, Wolf E E. n-Butane and n-pentane isomerization over mesoporous and conventional sulfated zirconia catalysts. Catal Today, 2000, 62: 255-268
CrossRef Google scholar
[67]
Risch M, Wolf E E. Effect of the preparation of a mesoporous sulfated zirconia catalyst in n-butane isomerization activity. Appl Catal A: General, 2001, 206: 283-293
CrossRef Google scholar
[68]
Wu Y N, Guo H F, Cui X L. Studies on deactivation and regeneration of solid super acid catalyst S2O82-/ZrO2-SiO2-Sm2O3. Chin J Appl Chem Ind, 2005, 34(2): 89-91 (in Chinese)
[69]
Martínez F, Morales G, Martín N, Grieken R V. Perfluorinated Nafion-modified SBA-15 materials for catalytic acylation of anisole. Appl Catal A: General, 2008, 347: 169-178
CrossRef Google scholar
[70]
Hino M, Arata K. Superacids by metal oxides, X: Reaction of butane catalyzed by sulfated metal oxides, zeolites, or silica aluminas mixed with Pt-ZrO2. Appl Catal A: General, 1998, 173: 121-124
CrossRef Google scholar
[71]
Xia Y D, Hua W M, Tang Y, Gao Z. A highly active solid superacid catalyst for n-butane isomerization: persulfate modified Al2O3-ZrO2. Chem Commun, 1999, 18: 1899-1900
CrossRef Google scholar
[72]
Lei T, Xu J S, Tang Y, Hua W M, Gao Z. New solid superacid catalysts for n-butane isomerization: γ-Al2O3 or SiO2 supported sulfated zirconia. Appl Catal A: General, 2000, 192: 181-188
CrossRef Google scholar
[73]
Hino M, Arata K. Catalysis of ruthenium-metal oxides mechanically mixed with sulfated zirconia for reaction of butane to isobutane. React Kinet Catal Lett, 2000, 71: 71-76
CrossRef Google scholar
[74]
Xia Q H, K. Hidajat K, Kawi S. Synthesis of SO42-/ZrO2/MCM-41 as a new superacid catalyst. Chem Commun, 2000, 22: 2229-2230
CrossRef Google scholar
[75]
Wang W, Chen C L, Xu N P, Han S, Li T, Cheng S, Mou C Y. Well-dispersed gallium-promoted sulfated zirconia on mesoporous MCM-41 silica. Catal Letters, 2002, 83: 281-285.
CrossRef Google scholar
[76]
Sugi Y, Maekawa H, Hasegawa Y, Ito A, Asai R, Yamamoto D, Komura K, Kubota Y, Kim J H, Seo G. The alkylation of biphenyl over three-dimensional large pore zeolites: the influence of zeolite structure and alkylating agent on the selectivity for 4,4'-dialkylbiphenyl. Catal Today, 2008, 131: 413-422
CrossRef Google scholar
[77]
Bokade V V, Yadav G D. Heteropolyacid supported on acidic clay: a novel efficient catalyst for alkylation of ethylbenzene with dilute ethanol to diethylbenzene in presence of C8 aromatics. J Mol Catal A: Chem, 2008, 285: 155-161
CrossRef Google scholar
[78]
Ojha K, Pradhan N C, Samanta A N. Kinetics of batch alkylation of phenol with tert-butyl alcohol over a catalyst synthesized from coal fly ash. Chem Eng J, 2005, 112: 109-115
CrossRef Google scholar
[79]
Satoh K, Matsuhashi H, Arata K. Alkylation to form trimethylpentanes from isobutane and 1-butene catalyzed by solid superacids of sulfated metal oxides. Appl Catal A: General, 1999, 189: 35-43
CrossRef Google scholar
[80]
Yadav G D, Pathre G S. Chemoselective catalysis by sulphated zirconia in O-alkylation of guaiacol with cyclohexene. J Mol Catal A: Chem, 2006, 243: 77-84
CrossRef Google scholar
[81]
Yadav G D, Murkute A D. Preparation of the novel mesoporous solid acid catalyst UDCaT-4 via synergism of persulfated alumina and zirconia into hexagonal mesoporous silica for alkylation reactions. Adv Synth Catal, 2004, 346: 389-394
CrossRef Google scholar
[82]
Wang Z C. Gas chromatography-mass spectrometric analysis of the products of alkylation of benzene with benzylchloride catalyzed by SO42-/ZrO2 solid superacid. Chin J Anal Chem, 34: 219-222 (in Chinese)
[83]
Qiang Z, Jiao Q Z, Min E Z. Iso-butane/1-butene alkylation reaction and deactivation of superacid (SO42-/ZrO2) catalysts. Chem J Chin Universities, 2005, 26: 1130-1132 (in Chinese)
[84]
Shibata T, Suzuki S, Kawagoe H, Komura K, Kubota Y, Sugi Y, Kim J H, Seo G. Synthetic investigation on MCM-68 zeolite with MSE topology and its application for shape-selective alkylation of biphenyl. Microporous Mesoporous Mater, 2008, 116: 216-226
CrossRef Google scholar
[85]
Sad M E, PadróC L, Apesteguía C R. Synthesis of cresols by alkylation of phenol with methanol on solid acids. Catal Today, 2008, 133-135: 720-728
CrossRef Google scholar
[86]
Jiang Y X, Chen X M, MoY F, TongZ F. Preparation and properties of Al-PILC supported SO42-/ZrO2 superacid catalyst. J Mol Catal A: Chem, 2004,. Mater Lett, 2003, 213: 231-234
CrossRef Google scholar
[86]
Yang H, Lu R, Shen L C, Song L Z, Zhao J Z, Wang Z, Wang L. Preparation, characterization and catalytic activity of sulfated zirconia-silica nanocrystalline catalysts. Mater Lett, 2003, 57: 2572-2579
CrossRef Google scholar
[87]
Yang H, Lu R, Zhao J Z, Yang X W, Shen L C, Wang Z C. Sulfated binary oxide solid superacids. Mater Chem Phys, 2003, 80: 68-72
CrossRef Google scholar
[88]
BiróK, Békássy S, Ágai B, Figueras F. Heterogeneous catalysis for the acetylation of benzo crown ethers. J Mol Catal A: Chem, 2000, 151: 179-184
CrossRef Google scholar
[89]
Arata K, Nakamura H, Shouji M. Friedel-Crafts acylation of toluene catalyzed by solid superacids. Appl Cata A: General, 2000, 197: 213-219
CrossRef Google scholar
[90]
Reddy B M, Sreekanth P M, Yamada Y, Kobayashi T. Surface characterization and catalytic activity of sulfate-, molybdate- and tungstate-promoted Al2O3-ZrO2 solid acid catalysts. J Mol Catal A: Chem, 2005, 227: 81-89
CrossRef Google scholar
[91]
Reddy B M, Sreekanth P M, Reddy V R. Modified zirconia solid acid catalysts for organic synthesis and transformations. J Mol Catal A: Chem, 2005, 225: 71-78
CrossRef Google scholar
[92]
Sohn J R, Kwon T D, Kim S B. Characterization and acid catalytic properties of titanium sulfate supported on zirconia. J Ind Eng Chem, 2001, 7: 441-448
[93]
Matsuhashi H, Miyazaki H, Kawamura Y, Nakamura H, Arata K. Preparation of a solid superacid of sulfated tin oxide with acidity higher than that of sulfated zirconia and its applications to aldol condensation and benzoylation. Chem Mater, 2001, 13: 3038-3042
CrossRef Google scholar
[94]
Reddy B M, Sreekanth P M. An efficient synthesis of 1,5-benzodiazepine derivatives catalyzed by a solid superacid sulfated zirconia. Tetrahedron Lett, 2003, 44: 4447-4449
CrossRef Google scholar
[95]
Nakajima A, Obata H, Kameshima Y, Okada K. Photocatalytic destruction of gaseous toluene by sulfated TiO2 powder. Catal Commun, 2005, 6: 716-720
CrossRef Google scholar
[96]
Muggli D S, Ding L F. Photocatalytic performance of sulfated TiO2 and Degussa P-25 TiO2 during oxidation of organics. Appl Catal B: Environ, 2001, 32: 181-194
CrossRef Google scholar
[97]
Colón G, Hidalgo M C, Munuera G, Ferino I, Cutrufello M G, Navío J A. Structural and surface approach to the enhanced photocatalytic activity of sulfated TiO2 photocatalyst. Appl Catal B: Environ, 2006, 63: 45-59
CrossRef Google scholar
[98]
Wang J, Wen X G, Wang M Q, Jiang P. Experimental research on photocatalytic degradation of dyestuff by SO42-/TiO2 solid superacid. Chin J Appl Chem Ind, 2007, 36: 537-539, 541
[99]
Brei V V, Prudius S V, Melezhyk O V. Vapour-phase nitration of benzene over superacid WO3/ZrO2 catalysts. Appl Catal A: General, 2003, 239: 11-16
CrossRef Google scholar
[100]
Li W S, Shen Z Q, Zhang Y F. Activity and mechanism of rare earth solid superacid for initiating ring-opening polymerization of cholomethyl thiirane. Eur Polym J, 2001, 37: 1185-1190
CrossRef Google scholar
[101]
Khomenko T M, Korchagina D V, Barkhash V A. Rearrangements of epoxides of some acyclic terpenoids in acidic media. Russ J Org Chem, 2001, 37: 793-801
CrossRef Google scholar
[102]
Hua W M, Gao Z. Low-temperature catalytic combustion on Pt/SO42-/ZrO2 and Pd/SO42-/ZrO2 catalysts. Catal Lett, 1996, 42: 209-212
CrossRef Google scholar
[103]
Hua W M, Gao Z. Catalytic combustion of n-pentane on Pt supported on solid superacids. Appl Catal B: Environ, 1998, 17: 37-42
CrossRef Google scholar
[104]
Browna A S C, Hargreaves J S J, Taylor S H. The application of “superacidic” metal oxides and their platinum doped counterparts to methane combustion. Catal Today, 2000, 59: 403-409
CrossRef Google scholar
[105]
Zhu Z G, Wang B, Ma H Zh. Preparation of SO42-/Fe2O3-MoO3 and its catalytic activity in the electrolytic reaction of phenol with methanol. J Chem Technol Biotechnol, 2008, 83:878-885
CrossRef Google scholar
[106]
Ma H Z, Chen F T, Wang B, Zhuo Q F. Modified SO42-/Fe2O3 solid superacid catalysts for electrochemical reaction of toluene with methanol. J Hazard Mater, 2007, 145: 453-458
CrossRef Google scholar
[107]
Chen F T, Ma H Z, Wang B. Cobalt modified solid superacid assisted electrochemical reaction of toluene with methanol. J Hazard Mater, 2007, 147: 964-970
CrossRef Google scholar
[108]
Wang Z C, Shui H F, Zhang D X, Gao J S. A comparison of FeS, FeS+S and solid superacid catalytic properties for coal hydro-liquefaction. Fuel, 2007, 86: 835-842
CrossRef Google scholar
[109]
Yin H L, Tan Z Y, Liao Y T, Feng Y J. Short communication application of SO42-/TiO2 solid superacid in decontaminating radioactive pollutants. J Environ Radioact, 2006, 87: 227-235
CrossRef Google scholar
[110]
Yu Zhang, Zhang H M, Zhai Y F, Zhu X B, Bi C. Investigation of self-humidifying membranes based on sulfonated poly(ether ether ketone) hybrid with sulfated zirconia supported Pt catalyst for fuel cell applications. J Power Sources, 2007, 168: 323-329
CrossRef Google scholar
[111]
Zhang Y, Zhang H M, Zhu X B, Bi C. Promotion of PEM self-humidifying effect by nanometer-sized sulfated zirconia-supported Pt catalyst hybrid with sulfonated poly(ether ether ketone). J Phys Chem B, 2007, 111: 6391-6399
CrossRef Google scholar
[112]
Reddy B M, Sreekanth P M, Lakshmanan P. Sulfated zirconia as an efficient catalyst for organic synthesis and transformation reactions. J Mol Catal A: Chem, 2005, 237: 93-100
CrossRef Google scholar
[113]
Hua W M, Goeppert A, Sommer J. Methane activation in the presence of Al2O3-promoted sulfated zirconia. Appl Catal A: General, 2001, 219: 201-207
CrossRef Google scholar
[114]
Wang B, Zhu J P, Ma H Z. Desulfurization from thiophene by SO42-/ZrO2 catalytic oxidation at room temperature and atmospheric pressure. J Hazard Mater, 2009,164: 256-264
CrossRef Google scholar

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China (Grant Nos. 20673040 and 20876062) and the Natural Science Foundation of Guangdong Province, China (No. 36055) for financial support of this work.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(218 KB)

Accesses

Citations

Detail

Sections
Recommended

/