Polymer-nanoinorganic particles composite membranes: a brief overview

Zhen-liang XU, Li-yun YU, Ling-feng HAN

PDF(377 KB)
PDF(377 KB)
Front. Chem. Sci. Eng. ›› 2009, Vol. 3 ›› Issue (3) : 318-329. DOI: 10.1007/s11705-009-0199-0
REVIEW ARTICLE
REVIEW ARTICLE

Polymer-nanoinorganic particles composite membranes: a brief overview

Author information +
History +

Abstract

Polymer-nanoinorganic particles composite membranes present an interesting approach for improving the physical and chemical, as well as separation properties of polymer membranes, because they possess characteristics of both organic and inorganic membranes such as good permeability, selectivity, mechanical strength, thermal stability and so on. The preparations and structures of polymer-nanoinorganic particles composite membranes and their unique properties are reviewed.

Keywords

polymer / nanoinorganic particles / composite membranes

Cite this article

Download citation ▾
Zhen-liang XU, Li-yun YU, Ling-feng HAN. Polymer-nanoinorganic particles composite membranes: a brief overview. Front Chem Eng Chin, 2009, 3(3): 318‒329 https://doi.org/10.1007/s11705-009-0199-0

References

[1]
Clarizia G, Algieri C, Drioli E. Filler-polymer combination: a route to modify gas transport properties of a polymeric membrane. Polymer, 2004, 45: 5671-5681
CrossRef Google scholar
[2]
Yang Y N, Wang P. Preparation and characterizations of a new PS/TiO2 hybrid membranes by sol-gel process. Polymer, 2006, 47: 2683-2688
CrossRef Google scholar
[3]
Guizard C, Bac A, Barboiu M, Hovnanian N. Hybrid organic-inorganic membranes with specific transport properties: applications in separation and sensors technologies. Sep Purif Technol, 2001, 25: 167-180
CrossRef Google scholar
[4]
Lu Z H, Liu G J, Duncan S. Poly(2-hydroxyethyl acrylate-co-methyl acrylate)/SiO2/TiO2 hybrid membranes. J Membr Sci, 2003, 221: 113-122
CrossRef Google scholar
[5]
Chiang P C, Whang W T, Tsai M H, Wu S C. Physical and mechanical properties of polyimide/titania hybrid films. Thin Solid Films, 2004, 447-448: 359-364
CrossRef Google scholar
[6]
Taniguchi A, Cakmak M. The suppression of strain induced crystallization in PET through submicron TiO2 particle incorporation. Polymer, 2004, 45: 6647-6654
CrossRef Google scholar
[7]
Peng F, Lu L, Sun H, Wang Y, Wu H, Jiang Z. Correlations between free volume characteristics and pervaporation permeability of novel PVA-GPTMS hybrid membranes. J Membr Sci, 2006, 275: 97-104
CrossRef Google scholar
[8]
Peng F, Lu L, Sun H, Wang Y, Liu J, Jiang Z. Hybrid organic-inorganic membrane: solving the tradeoff between permeability and selectivity. Chem Mater, 2005, 17: 6790-6796
CrossRef Google scholar
[9]
Patel N P, Zielinski J M, Samseth J, Spontak R J. Effects of pressure and nanoparticle functionality on CO2-selective nanocomposites derived from cross-linked poly(ethylene glycol). Macromol Chem Phys, 2004, 205: 2409-2419
CrossRef Google scholar
[10]
Shekhawat D, Luebke D R, Pennline H W. A review of carbon dioxide selective membranes. US Department of Energy, 2003
[11]
Okui T, Saito Y, Okubo T, Sadakata M. Gas permeation of porous organic/inorganic hybrid membranes. J Sol-Gel Sci Technol, 1995, 5: 127-134
CrossRef Google scholar
[12]
Ai X, Hu X. Study on organic-inorganic hybrid membranes. Huaxue Jinzhan, 2003, 16: 654-659(in Chinese)
[13]
Genne I, Kuypers S, Leysen R. Effect of the addition of ZrO2 to polysulfone based UF membranes. J Membr Sci, 1996, 113: 343-350
CrossRef Google scholar
[14]
Wara N M, Francis L F, Velamakanni B V. Addition of alumina to cellulose acetate membranes. J Membr Sci, 1995, 104: 43-49
CrossRef Google scholar
[15]
Stephen R, Ranganathaiah C, Varghese S, Joseph K, Thomas S. Gas transport through nano and micro composites of natural rubber (NR) and their blends with carboxylated styrene butadiene rubber (XSBR) latex membranes. Polymer, 2006, 47: 858-870
CrossRef Google scholar
[16]
Mascia L, Zhang Z, Shaw S J. Carbon fibre composites based on polyimide/silica ceramers: aspects of structure-properties relationship. Composites A,1996, 27: 1211-1221
CrossRef Google scholar
[17]
Shi D, Kong Y, Yang J, Du H. Study on transitional metal organic complex-polyimide hybrid material for gas separation membranes. Acta Polym Sin, 2000, 4: 457-461
[18]
Liu H. Synthesis of TiO2 nanopowder enwrapped by organic membrane with microwave induced plasma method. Huaxue Tongbao, 1997, 10: 44-46
[19]
Doucoure A, Guizard C, Durand J, Berjoan R, Cot L. Plasma polymerization of fluorinated monomers on mesoporous silica membranes and application to gas permeation. J Membr Sci, 1996, 117: 143-150
CrossRef Google scholar
[20]
Patel N P, Miller A C, Spontak R J. Highly CO2-permeable and selective polymer nanocomposite membranes. Adv Mater, 2003, 15: 729-733
CrossRef Google scholar
[21]
Patel N P, Aberg C M, Sanchez A M, Capracotta M D, Martin J D, Spontak R J. Morphological, mechanical and gas-transport characteristics of cross-linked poly(propylene glycol): homopolymers, nanocomposites and blends. Polymer, 2004, 45: 5941-5950
CrossRef Google scholar
[22]
Nunes S P, Peinenmann K V, Ohlorogge K, Alpers A, Keller M, Pires A T N. Membranes of poly(ether imide) and nanodispersed silica. J Membr Sci, 1999, 157: 219-226
CrossRef Google scholar
[23]
Brzesowsky R H, de With G, van den Cruijsem S, Snijkers-Hendrickx I J M, Wolter W A M, van Lierop J G. Glass strengthening by silica particle reinforced organic-inorganic coatings. J Non-Cryst Solids, 1998, 241: 27-37
CrossRef Google scholar
[24]
Livage J, Sanchez C. Sol-gel chemistry. J Non-Cryst Solids, 1992, 145: 11-19
CrossRef Google scholar
[25]
Kioul A, Mascia L. Compatibility of polyimide-silicate ceramers induced by alkoxysilane silane coupling agents. J Non-Cryst Solids, 1994, 175: 169-186
CrossRef Google scholar
[26]
Smaihi M, Jermoumi T, Marignan J, Noble R D. Organic-inorganic gas separation membranes: preparation and characterization. J Membr Sci, 1996, 116: 211-220
CrossRef Google scholar
[27]
Iwata M, Adachi T, Tomidokoro M, Ohta M, Kobayashi T. Hybrid sol-gel membranes of polyacrylonitrile–tetraethoxysilane composites for gas permselectivity. J Appl Polym Sci, 2003, 88: 1752-1759
CrossRef Google scholar
[28]
Gomes D, Nunes S P, Peinemann K V. Membranes for gas separation based on poly(1-trimetylsilyl-1-propyne)-silica nanocomposites. J Membr Sci, 2005, 246: 13-25
CrossRef Google scholar
[29]
Vollenberg P H T, Heikens D. Particle size dependence of the Young's modulus of filled polymers: 1. preliminary experiments. Polymer, 1989, 30: 1656-1662
CrossRef Google scholar
[30]
Chan C M, Wu J, Li J X, Cheung Y K. Polypropylene/calcium carbonate nanocomposites. Polymer, 2002, 43: 2981-2992
CrossRef Google scholar
[31]
Shelley J S, Mather P T, DeVries K L. Reinforcement and environmental degradation of nylon-6/clay nanocomposites. Polymer, 2001, 42: 5849-5858
CrossRef Google scholar
[32]
Park C I L, Park O O, Lim J G, Kim H J. The fabrication of syndiotactic polystyrene/organophilic clay nanocomposites and their properties. Polymer, 2001, 42: 7465-7475
CrossRef Google scholar
[33]
Jordan J, Jacob K I, Tannenbaum R, Sharaf M A, Jasiuk I. Experimental trends in polymer nanocomposites—a review. Mat Sci Eng A, 2005, 393: 1-11
CrossRef Google scholar
[34]
Reynaud E, Jouen T, Gautheir C, Vigier G. Nanofillers in polymeric matrix: a study on silica reinforced PA6. Polymer, 2001, 42: 8759-8768
CrossRef Google scholar
[35]
Rong M Z, Zhang M Q, Zheng Y X, Zeng H M, Walter R, Friedrich K. Structure-property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites. Polymer, 2001, 42: 167-183
CrossRef Google scholar
[36]
Sheng N, Boyce M C, Parks D M, Rutledge G C, Abes J I, Cohen R E. Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle. Polymer, 2004, 45: 487-506
CrossRef Google scholar
[37]
Priya L, Jog J P. Poly(vinylidene fluoride)/clay nanocomposites prepared by melt intercalation: crystallization and dynamic mechanical behavior studies. J Polym Sci B: Polym Phys, 2002, 40: 1682-1689
CrossRef Google scholar
[38]
Tortora M, Gorrasi G, Vittoria V, Galli G, Ritrovati S, Chiellini E. Structural characterization and transport properties of organically modified montmorillonite/polyurethane nanocomposites. Polymer, 2002, 43: 6147-6157
CrossRef Google scholar
[39]
Varlot K M, Reynaud E, Vigier G, Varlet J. Mechanical properties of clay-reinforced polyamide. J Polym Sci B: Polym Phys, 2002, 40: 272-283
CrossRef Google scholar
[40]
Arocha P U, Mehler C, Puskas J E, Altstat V. Effect of sample thickness on the mechanical properties of injection-molded polyamide-6 and polyamide-6 clay nanocomposites. Polymer, 2003, 44: 2441-2446
CrossRef Google scholar
[41]
Zoppi R A, das Neves S, Nunes S P. Hybrid films of poly(ethylene oxide-b-amide-6) containing sol-gel silicon or titanium oxide as inorganic fillers: effect of morphology and mechanical properties on gas permeability. Polymer, 2000, 41: 5461-5470
CrossRef Google scholar
[42]
Park C I, Choi W M, Kim M H, Park O O. Thermal and mechanical properties of syndiotactic polystyrene/organoclay nanocomposites with different microstructures. J Polym Sci B: Polym Phys, 2004, 42: 1685-1693
[43]
Gangopadhyay R, De A. Conducting polymer nanocomposites: a brief overview. Chem Mater, 2000, 12: 608-622
CrossRef Google scholar
[44]
Xiao Y C, Wang K Y, Chung T S, Tan J. Evolution of nano-particle distribution during the fabrication of mixed matrix TiO2-polyimide hollow fiber membranes. Chem Eng Sci, 2006, 61: 6228-6233
CrossRef Google scholar
[45]
Jiang L Y, Chung T S, Cao C, Huang Z, Kulprathipanja S. Fundamental understanding of nano-sized zeolite distribution in the formation of the mixed matrix single- and dual-layer asymmetric hollow fiber membranes. J Membr Sci, 2005, 252: 89-100
CrossRef Google scholar
[46]
Lu Y, Yu S L, Chai B X, Shun X D. Effect of nano-sized Al2O3-particle addition on PVDF ultrafiltration membrane performance. J Membr Sci, 2006, 276: 162-167
CrossRef Google scholar
[47]
Li J F, Xu Z L, Yang H, Yu L Y, Liu M. Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane. Appl Surf Sci, 2009, 255(9), 4725-4732
CrossRef Google scholar
[48]
Zulfikar M A, Mohammad A W, Hilal N. Preparation and characterization of novel porous PMMA-SiO2 hybrid membranes. Desalination, 2006, 192: 262-270
CrossRef Google scholar
[49]
Merkel T C, Freeman B D, Spontak R J, He Z, Pinnau I, Meakin P, Hill A J. Ultrapermeable, reverse-selective nanocomposite membranes. Science, 2002, 296: 519-522
CrossRef Google scholar
[50]
Moaddeb M, Koros W J. Gas transport properties of thin polymeric membranes in the presence of silicon dioxide particles. J Membr Sci, 1997, 125: 143-163
CrossRef Google scholar
[51]
Hibshman C, Cornelius C J, Marand E. The gas separation effects of annealing polyimide-organosilicate hybrid membranes. J Membr Sci, 2003, 211: 25-40
CrossRef Google scholar
[52]
Higuchi A, Agatsuma T, Uemiya S, Kojima T, Mizoguchi K, Pinnau I, Nagai K, Freeman B D. Preparation and gas permeation of immobilized fullerene membranes. J Appl Polym Sci, 2000, 7: 529-537
CrossRef Google scholar
[53]
Merkel T C, He Z, Pinnau I, Freeman B D, Hill A J, Meakin P. Sorption and transport in poly(2,2-bis(trifluoromethyl)-4,5-difluoro-1,3-dioxole-cotetrafluoroethylene) containing nanoscale fumed silica. Macromolecules, 2003, 36: 8406-8484
CrossRef Google scholar
[54]
Winberg P, DeSitter K, Dotremont C, Mullens S, Vankelecom I F J, Maurer F H J. Free volume and interstitial mesopores in silica filled poly(1-trimethylsilyl-1-propyen) nanocomposites. Macromolecules, 2005, 38: 3776-3782
CrossRef Google scholar
[55]
Kim J H, Lee Y M. Gas permeation properties of poly(amide-6-b-ethyleneoxide)-silica hybrid membranes. J Membr Sci, 2001, 193: 209-225
CrossRef Google scholar
[56]
Hu Q, Marand E, Dhingra S, Fritsch D, Wen J, Wilkes G. Poly(amideimide)/TiO2 nano-composite gas separation membranes: fabrication and characterization. J Membr Sci, 1997, 135: 65-79
CrossRef Google scholar
[57]
Cong H L, Radosz M, Towler B F, Shen Y Q. Polymer-inorganic nanocomposite membranes for gas separation. Sep Purif Technol, 2007, 55: 281-291
CrossRef Google scholar
[58]
Lu Y, Yu S L, Chai B X. Preparation of poly(vinylidene fluoride) (pvdf) ultrafiltration membrane modified by nano-sized alumina (Al2O3) and its antifouling research. Polymer, 2005, 46: 7701-7706
CrossRef Google scholar
[59]
Yang Y N, Zhang H X, Wang P, Zheng Q Z, Li J. The influence of nano-sized TiO2 fillers on the morphologies and properties of PSF UF membrane. J Membr Sci, 2007, 288: 231-238
CrossRef Google scholar
[60]
Bae T H, Tak T M. Preparation of TiO2 self-assembled polymeric nanocomposite membranes and examination of their fouling mitigation effects in a membrane bioreactor system. J Membr Sci, 2005, 266: 1-5
CrossRef Google scholar
[61]
Yuan H K, Xu Z L, Shi J H, Ma X H. Perfluorosulfonic acid-tetraethoxysilane/polyacrylonitrile (PFSA-TEOS/PAN) hollow fiber composite membranes prepared for pervaporation dehydration of ethyl acetate-water solutions. J Appl Polym Sci, 2008, 109: 4025-4035
CrossRef Google scholar
[62]
Lang W Z, Xu Z L, Yang H, Tong W. Preparation and characterization of PVDF-PFSA blend hollow fiber UF membrane. J Membr Sci, 2007, 288: 123-131
CrossRef Google scholar
[63]
Aerts P, Greenberg A R, Leysen R, Krantz W B, Reinsch V E, Jacobs P A. The influence of filler concentration on the compaction and filtration properties of zirfon-composite ultrafiltration membranes. Sep Purif Technol, 2001, 22–23: 663-669
CrossRef Google scholar
[64]
Bottino A, Capannelli G, Asti V D. Preparation and properties of novel organic-inorganic porous membranes. Sep Purif Technol, 2001, 22-23: 269-275
CrossRef Google scholar
[65]
Bottino A, Capannelli G, Comite A. Preparation and characterization of novel porous PVDF-ZrO2 composite membranes. Desalination, 2002, 146: 35-40
CrossRef Google scholar
[66]
Lin D J, Chang C L, Huang F M, Cheng L P. Effect of salt additive on the formation of microporous poly(vinylidene fluoride) membranes by phase inversion from LiClO4/water/DMF/PVDF system. Polymer, 2003, 44: 413-422
CrossRef Google scholar
[67]
Yang Y N, Wu J, Zheng Q Z, Chen X S, Zhang H X. The research of rheology and thermodynamics of organic-inorganic hybrid membrane during the membrane formation. J Membr Sci, 2008, 311: 200-207
CrossRef Google scholar
[68]
Bottino A, Capannelli G, Comite A. Preparation and characterization of novel porous PVDF-ZrO2 composite membranes. Desalination, 2002, 146: 35-40
CrossRef Google scholar
[69]
Yang Y N, Wang P, Zheng Q Z. Preparation and properties of polysulfone/TiO2 composite ultrafiltration membranes. J Polym Sci Part B: Polym Phys, 2006, 44: 879-887
CrossRef Google scholar
[70]
Lee H S, Im S J, Kim J H, Kim H J, Kim J P, Min B R. Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles. Desalination, 2008, 219: 48-56
CrossRef Google scholar
[71]
Chang C L, Chang M S. Preparation of multi-layer silicone/PVDF composite membranes for pervaporation of ethanol aqueous solutions. J Membr Sci, 2004, 238: 117-122
CrossRef Google scholar
[72]
Sairam M, Patil M B, Veerapur R S, Patil S A, Aminabhavi T M. Novel dense poly(vinyl alcohol)-TiO2 mixed matrix membranes for pervaporation separation of water-isopropanol mixtures at 30°C. J Membr Sci, 2006, 281: 95-102
CrossRef Google scholar
[73]
Chen J H, Liu Q L, Fang J, Zhu A M, Zhang Q G. Composite hybrid membrane of chitosan-silica in pervaporation separation of MeOH/DMC mixtures. J Colloid Interf Sci, 2007, 316: 580-588
CrossRef Google scholar
[74]
Veerapur R S, Patil M B, Gudasi K B, Aminabhavi T M. Poly(vinyl alcohol)-zeolite T mixed matrix composite membranes for pervaporation separation of water+ 1,4-dioxane mixtures. Sep Purif Technol. 2008, 58: 377-385
CrossRef Google scholar
[75]
Wang Y B, Yang D, Zheng X H, Jiang Z Y, Li J. Zeolite beta-filled chitosan membrane with low methanol permeability for direct methanol fuel cell. J Power Sources, 2008, 183: 454-463
CrossRef Google scholar
[76]
Navarra M A, Abbati C, Scrosati B. Properties and fuel cell performance of a Nafion-based, sulfated zirconia-added, composite membrane. J Power Sources, 2008, 183: 109-113
CrossRef Google scholar
[77]
Xu T W. Ion exchange membranes: State of their development and perspective. J Membr Sci, 2005, 263: 1-29
CrossRef Google scholar
[78]
Mahendran. Filtration membrane with calcined alpha-alumina particles therein. <patent>United States Patent, US 5914039</patent>

Acknowledgements

The authors acknowledge the National Key Fundamental Research Development Plan (No. 2003CB615705) for giving financial supports in this project.

RIGHTS & PERMISSIONS

2014 Higher Education Press and Springer-Verlag Berlin Heidelberg
AI Summary AI Mindmap
PDF(377 KB)

Accesses

Citations

Detail

Sections
Recommended

/