Fabrication and mechanical properties of single-wall carbon nanotubes and hyperbranched diazonium salt multilayers

LI Xinyang, FAN Pengwei, TUO Xinlin, WANG Xiaogong

PDF(148 KB)
PDF(148 KB)
Front. Chem. Sci. Eng. ›› 2008, Vol. 2 ›› Issue (3) : 286-290. DOI: 10.1007/s11705-008-0058-4

Fabrication and mechanical properties of single-wall carbon nanotubes and hyperbranched diazonium salt multilayers

  • LI Xinyang, FAN Pengwei, TUO Xinlin, WANG Xiaogong
Author information +
History +

Abstract

Acidized single-wall carbon nanotubes (SWNTs) were fabricated into multilayers with a hyperbranched azobenzene-containing polymeric diazonium salt (PDAS) using the layer-by-layer adsorption technique. The fabrication process, multilayer thickness variation, multilayer surface morphology and the interaction between SWNTs and PDAS were monitored by UV-Vis absorption spectroscopy, optical ellipsometry, Atomic Force Microscopy, Scanning Electron Microscopy and Raman spectroscopy. Moreover, the nanomechanical properties of the multilayer films were measured by nanoindentation. All results show that SWNTs and PDAS can be fabricated into multilayers based on the cooperation of electrostatic absorption and chemical cross-linkage between SWNTs and PDAS. Further, this cooperation endows the SWNT/PDAS multilayer films with outstanding nanomechanical properties. The hardness and modulus are about 2.0GPa and 10.0GPa, respectively. Finally, the SWNT/PDAS multilayer film can be peeled off to be a free-standing film.

Cite this article

Download citation ▾
LI Xinyang, FAN Pengwei, TUO Xinlin, WANG Xiaogong. Fabrication and mechanical properties of single-wall carbon nanotubes and hyperbranched diazonium salt multilayers. Front. Chem. Sci. Eng., 2008, 2(3): 286‒290 https://doi.org/10.1007/s11705-008-0058-4

References

1. Jin Z, Pramoda K P, Xu G, Goh S H . Dynamic mechanicalbehavior of melt-processed multi-walled carbon nanotube/poly(methylmethacrylate) composites. Chemical PhysicsLetters, 2001, 337(1–3): 43–47. doi:10.1016/S0009‐2614(01)00186‐5
2. Decher G H J D, Schmitt J . Buildup of ultrathin multilayerfilms by a self-assembly process. III.Consecutivelyalternating adsorption of anionic and cationic polyelectrolytes oncharged surfaces Thin Solid Films, 1992, 210–211: 831–835
3. Tuo X L, Wang X G . Construction of polyelectrolyteself-assembled multilayers in nonaqueous media. Acta Polymerica Sinica, 2006, (1): 156–159 (in Chinese)
4. Rouse J H, Lillehei P T . Electrostatic assembly ofpolymer/single walled carbon nanotube multilayer films. Nano Letters, 2003, 3(1): 59–62. doi:10.1021/nl025780j
5. Mamedov A A, Kotov N A, Prato M, Guldi D M, Wicksted J P, Hirsch A . Moleculardesign of strong single-wall carbon nanotube/polyelectrolyte multilayercomposites. Nature Materials, 2002, 1(3): 190–194. doi:10.1038/nmat747
6. Li B, Cao T B, Cao W X, Shi Z J, Gu Z N . Self-assembly of single-walled carbonnanotube based on diazoresin. SyntheticMetals, 2002, 132(1): 5–8. doi:10.1016/S0379‐6779(02)00200‐X
7. Che P C, He Y N, Zhang Y, Wang X . Synthesizinghyperbranched Azo polymer through Azo-coupling reaction. Chemistry Letters, 2004, 33(1): 22–23. doi:10.1246/cl.2004.22
8. Che P C, He Y N, Wang X G . Photo-induced dichroism and surface-relief-gratings ofhyperbranched azo polymers synthesized by azo-coupling reaction. Acta Polymerica Sinica, 2006, (8): 970–976 (in Chinese)
9. Tuo X L, Chen D, Wang X G . Building-up of azo polyelectrolyte self-assembled multilayersin N,N-dimethyl formamide/H2O mixtures. Acta Polymerica Sinica, 2005, (4): 555–559 (in Chinese)
10. Tuo X L, Chen D, Cheng H, Wang X G . Fabricatingwater-insoluble polyelectrolyte into multilayers with layer-by-layerself-assembly. Polymer Bulletin, 2005, 54(6): 427–433. doi:10.1007/s00289‐005‐0387‐0
11. Sun J Q, Wu T, Sun Y P, Wang Z Q, Zhang X, Shen J C, Cao W X . Fabrication of a covalentlyattached multilayer via photolysis of layer-by-layer self-assembledfilms containing diazo-resins. ChemicalCommunications, 1998, (17): 1853–1854. doi:10.1039/a804623i
12. Dyke C A, Tour J M . Solvent-free functionalizationof carbon nanotubes. Journal of the AmericanChemical Society, 2003, 125(5): 1156–1157. doi:10.1021/ja0289806
13. Nuyken O, Scherer C, Baindl A, Brenner A R, Dahn U, Gartner R, KaiserRohrich S, Kollefrath R, Matusche P, Voit B . Azo-group-containingpolymers for use in communications technologies. Progress in Polymer Science, 1997, 22(1): 93–183. doi:10.1016/S0079‐6700(96)00020‐2
14. Oliver W C, Pharr G M . Measurement of hardness andelastic modulus by instrumented indentation: advances in understandingand refinements to methodology. Journalof materials research, 2004, 19: 3–20. doi:10.1557/jmr.2004.19.1.3
15. Jiang C Y, Markutsya S, Pikus Y, Tsukruk V V . Freely suspended nanocomposite membranes as highly sensitive sensors. Nature Materials, 2004, 3(10): 721–728. doi:10.1038/nmat1212
AI Summary AI Mindmap
PDF(148 KB)

Accesses

Citations

Detail

Sections
Recommended

/