Effect of Fe content on FeMn catalysts for light alkenes synthesis

ZHOU Jun1, CHU Wei1, ZHANG Hui1, XU Huiyuan1, ZHANG Tao2

PDF(112 KB)
PDF(112 KB)
Front. Chem. Sci. Eng. ›› 2008, Vol. 2 ›› Issue (3) : 315-318. DOI: 10.1007/s11705-008-0050-z

Effect of Fe content on FeMn catalysts for light alkenes synthesis

  • ZHOU Jun1, CHU Wei1, ZHANG Hui1, XU Huiyuan1, ZHANG Tao2
Author information +
History +

Abstract

The effect of Fe content on FeMn/MgO catalysts for light alkenes synthesis through CO hydrogenation was investigated. Catalysts were prepared by a conventional co-impregnation method, characterized using BET, X-ray powder diffraction (XRD) and Temperature-programmed reduction (H2-TPR) techniques. High activity was obtained over the catalyst with 9 wt-% Fe content, over which CO conversion and the selectivity of C2=–C4= reached 91.36% and 58.48%, respectively. With the increase of Fe content, both the conversion and the selectivity were improved within a certain range and then decreased. The results show that the surface area of the catalyst played an important role in the catalytic reaction. With the increase of Fe loading, the interaction action between Fe and Mn was enhanced and FeMn solid solution was formed.

Cite this article

Download citation ▾
ZHOU Jun, CHU Wei, ZHANG Hui, XU Huiyuan, ZHANG Tao. Effect of Fe content on FeMn catalysts for light alkenes synthesis. Front. Chem. Sci. Eng., 2008, 2(3): 315‒318 https://doi.org/10.1007/s11705-008-0050-z

References

1. Zhang J C, Wei G B, Cao W L . Preparation and characterization of Fe/AC catalysts forsynthesis of light olefins via carbon monoxide hydrogenation. Chinese Journal of Catalysis, 2003, 24(4): 259–264 (in Chinese)
2. Yang Y, Xiang H W, Zhang Y L, Zhong B, Li Y W . A highly active and stable Fe-Mn catalystfor slurry Fischer–Tropsch synthesis. Catalysis Today, 2005, 106: 170–175. doi:10.1016/j.cattod.2005.07.127
3. Raje A P, Davis B H . Fischer-Tropsch synthesisover Fe-based catalysts in a slurry reactor: reaction rates, selectivitiesand implications for improving hydrocarbon productivity. Catalysis Today, 1997, 36: 335–345. doi:10.1016/S0920‐5861(96)00245‐3
4. Guo G Q, Huang Y M . Studies on preparation ofcatalyst for light olefin synthesis via carbon monoxide hydrogenation. Natural Gas Chemical Industry, 1997, 22(4): 25–28 (in Chinese)
5. Xu L Y, Wang Q X, Xu Y D, Huang J S . K-Fe-MnO/MgOcatalyst for production of light alkenes from syngas. Journal of Fuel Chemistry and Technology, 1995, 23(3): 317–321 (in Chinese)
6. Xu L Y, Chen G Q, Cai G Y . The general introduction for production of light alkenesfrom syngas. Natural Gas Chemical Industry, 1990, 22(2): 46–51 (in Chinese)
7. Xu W Y, Ma J H, Li R F . Study on catalytic synthesis of light olefins via carbonmonoxide hydrogenation over FeK/Si-2. NaturalGas Chemical Industry, 1991, 16(4): 8–12 (in Chinese)
8. Herranz T, Rojas S, Perez-Alonso F J . Hydrogenation of carbon oxides over promoted Fe-Mn catalystsprepared by the microemulsion methodology. Applied Catalysis A, 2006, 311: 66–75. doi:10.1016/j.apcata.2006.06.007
9. Xu L Y, Wang Q X, Yang L . Performance of IIA metal oxide supported Fe-MnO catalystfor production of light alkenes via syngas. Journal of Fuel Chemistry and Technology, 1995, 23(2): 125–130 (in Chinese)
10. O'Brien R J, Xu L G, Spicer R L, Bao S Q, Milburn D R, Davis B H . Activity and selectivity of precipitated Fe Fischer-Tropsch catalysts. Catalysis Today, 1997, 36: 325–334. doi:10.1016/S0920‐5861(96)00246‐5
11. Ji Y Y, Xiang H W, Yang J L, Xu Y Y, Li Y W, Zhong B . Effectof reaction conditions on the product distribution during Fischer–Tropschsynthesis over an industrial Fe-Mn catalyst. Applied Catalysis A, 2001, 214: 77–86. doi:10.1016/S0926‐860X(01)00480‐X
12. Dry M E . Practical and theoretical aspects of the catalytic Fischer-Tropschprocess. Applied Catalysis A, 1996, 138: 319–344. doi:10.1016/0926‐860X(95)00306‐1
13. Meng X B, Huang Y M, Dang Z Y, Xu H Z . Study oncatalytic synthesis of light olefins via carbon dioxide hydrogenationover supported Fe catalysts. Natural GasChemical Industry, 1995, 20(5): 21–24 (in Chinese)
14. Ren D M, Zhou Y S . Effects of Fe content onCO2 hydrogenation over Fe-Mn-K catalyst. Industrial Catalysis, 2004, 12(7): 32–35 (in Chinese)
15. Xu L Y, Chen G Q, Cai G Y, Wang Q X . CO hydrogenationfor light olefins production over Fe-MnO/zeolite catalysts IV. Performanof DM-II zeolite supported Fe-MnO catalyst with basic promoter. Chinese Journal of Catalysis, 1992, 13(1): 31–37 (in Chinese)
16. Xu L Y, Chen G Q, Cai G Y, Wang Q X . CO hydrogenationfor light olefins production over Fe-MnO/zeolite catalysts. III: Actionof basic property and MnO promoter on the catalytic property. Chinese Journal of Catalysis, 1990, 11(6): 442–448 (in Chinese)
17. Wang C, Wang Q X, Sun X D, Xu L Y . CO hydrogenationto light alkenes over Mn/Fe catalysts prepared by coprecipitationand sol-gel methods. Catalysis Letters, 2005, 105: 93–101. doi:10.1007/s10562‐005‐8011‐3
18. Yang Y, Tao Z C, Zhang C H, Wang H, Tian L, Xu Y Y, Xiang H W, Li Y W . Effect of calcination temperature on the structure andFischer-Tropsch performance of Fe-Mn catalyst. Journal of Fuel Chemistry and Technology, 2004, 32(6): 717–722 (in Chinese)
AI Summary AI Mindmap
PDF(112 KB)

Accesses

Citations

Detail

Sections
Recommended

/