Construction of PS/PNIPAM core-shell particles and hollow spheres by using hydrophobic interaction and thermosensitive phase separation

ZHU Dongmei, WANG Fei, GAO Cuiling, XU Zheng

PDF(160 KB)
PDF(160 KB)
Front. Chem. Sci. Eng. ›› 2008, Vol. 2 ›› Issue (3) : 253-256. DOI: 10.1007/s11705-008-0049-5

Construction of PS/PNIPAM core-shell particles and hollow spheres by using hydrophobic interaction and thermosensitive phase separation

  • ZHU Dongmei, WANG Fei, GAO Cuiling, XU Zheng
Author information +
History +

Abstract

This paper reports an easy and effective way to fabricate polystyrene/poly (N-isopropylacrylamide) (PS/PNIPAM) core-shell particles and PNIPAM hollow spheres. The main point of the method is to take advantage of the hydrophobic interaction between initiator and PS particles. The hydrophobic azodiisobutyronitriles automatically concentrate around the PS particles and initiate polymerization of N-isopropylacrylamide (NIPAM) and the crosslinker methylene bisacrylamide (MBA), which dissolve in the aqueous phase, at the surface of the PS nanoparticles. Then, PNIPAM adheres to the PS particles to form a core-shell structure as a result of their hydrophobic interaction. This interaction is due to the unique property of PNIPAM, namely, its ability to transition from hydrophilic to hydrophobic when the temperature rises to 32°C. Furthermore, the hollow PNIPAM spheres were obtained by etching the PS core with chloroform.

Cite this article

Download citation ▾
ZHU Dongmei, WANG Fei, GAO Cuiling, XU Zheng. Construction of PS/PNIPAM core-shell particles and hollow spheres by using hydrophobic interaction and thermosensitive phase separation. Front. Chem. Sci. Eng., 2008, 2(3): 253‒256 https://doi.org/10.1007/s11705-008-0049-5

References

1. Jeong B, Bae Y H, Lee D S, Kim S W . Biodegradableblock copolymers as injectable drug-delivery systems. Nature, 1997, 388: 860–862. doi:10.1038/42218
2. Kurisawa M, Terano M, Yui N . Doublestimuli-responsive degradable hydrogels for drugdelivery: interpenetrating polymer networks composed of oligopeptide-terminatedpoly(ethylene glycol) and dextran. MacromolRapid Commun, 1995, 16: 663–666. doi:10.1002/marc.1995.030160905
3. Brøndsted H, Kopecek J . Drug delivery to the colon:in vitro and in vivo degradation. PharmRes, 1992, 9: 1540–1545. doi:10.1023/A:1015847921435
4. Miyata T, Asami N, Uragami T . Preparation of an antigen-sensitive hydrogel using antigen-antibodybindings. Macromolecules, 1999, 32: 2082–2084. doi:10.1021/ma981659g
5. Holtz J H, Asher S A, Munro C H, Asher S A . Intelligentpolymerized crystalline colloidal arrays: novel chemical sensor materials. Anal Chem, 1998, 70: 780–791. doi:10.1021/ac970853i
6. Holtz J H, Asher S A . Polymerized colloidal crystalhydrogel films as intelligent chemical sensing materials. Nature, 1997, 389: 829–832. doi:10.1038/39834
7. Ouali L, Stoll S, Pefferkorn E, Elaissari A, Lanet V, Pichot C, Mandrand B . Coagulationof antibody-sensitized latexes in the presence of antigen. Polym Adv Technol, 1995, 6: 541–546. doi:10.1002/pat.1995.220060716
8. Heskins M, Guillet J E . Solution properties of poly(N-isopropylacrylamide). J Macromol Sci Chem, 1968, 8: 1441–1455. doi:10.1080/10601326808051910
9. Yan L, Yu M, Markus D, Matthias B . Thermosensitivecore-shell particles as carriers for Ag nanoparticles: modulatingthe catalytic activity by a phase transition in networks. Angew Chem Int Ed, 2006, 45: 813–816. doi:10.1002/anie.200502731
10. Chen C W, Chen M Q, Takeshi S, Mitsuru A . In-siteformation of silver nanoparticles on poly(N-isopropylacrylamide)-coated polystyrene microspheres. Adv Mater, 1998, 10(14): 1122–1126. doi:10.1002/(SICI)1521‐4095(199810)10:14<1122::AID‐ADMA1122>3.0.CO;2‐N
11. Sun Q H, Deng Y L . Encapsulation of polystyrenelatex with temperature-responsive poly(N-isopropylacrylamide) via a self-assembling approach and the adsorptionbehaviors therein. Langmuir, 2005, 21: 5812–5816. doi:10.1021/la050403i
12. Dingenouts N, Seelenmeyer S, Deike I, Rosenfeldt S, Ballau M, Lindner P, Narayanan T . Analysisof thermosensitive core-shell colloids by small-angle neutron scatteringincluding contrast variation. Phys ChemChem Phys, 2001, 3: 1169–1174. doi:10.1039/b009104i
13. Cheng Y, Jayachandran N K, Donald E B, Fan J, Chi W . Laser-light-scattering study of internal motions of polymerchains grafted on spherical latex particles. J Phys Chem B, 2004, 108: 18479–1848. doi:10.1021/jp047403w
14. Thomas H, Charles D D, Wolfgang E, Charles D D, Wolfgang E, Karl K . PNIPAM-co-polystyrenecore-shell microgels: structure, swelling behavior, and crystallization. Langmuir, 2004, 20: 4330–4335. doi:10.1021/la049546f
15. Zha L S, Zhang Y, Yang W L, Fu S . Monodispersetemperature-sensitive microcontainers. Adv Mater, 2002, 14: 1090–1092. doi:10.1002/1521‐4095(20020805)14:15<1090::AID‐ADMA1090>3.0.CO;2‐6
16. Zou D Z, Sun L Q, Aklonis J J . Model filled polymers. VIII: Synthesis of crosslinkedpolymeric beads by seed polymerization.J Polym Sci Part A: Polymer Chemistry, 1992, 30: 1463–1475. doi:10.1002/pola.1992.080300726
17. Kim S H, Son W K, Kim Y J, Kang E, Kim D . Synthesis of polystyrene/poly(butyl acrylate) core-shelllatex and its surface morphology. J ApplPolym Sci, 2003, 88: 595–601. doi:10.1002/app.11495
AI Summary AI Mindmap
PDF(160 KB)

Accesses

Citations

Detail

Sections
Recommended

/