Phenolic rigid organic filler/isotactic polypropylene composites. I. Preparation

QI Dongming1, YANG Lei2, WU Minghua2, LIN Heming2, NITTA Kohhei3

PDF(327 KB)
PDF(327 KB)
Front. Chem. Sci. Eng. ›› 2008, Vol. 2 ›› Issue (3) : 236-241. DOI: 10.1007/s11705-008-0034-z

Phenolic rigid organic filler/isotactic polypropylene composites. I. Preparation

  • QI Dongming1, YANG Lei2, WU Minghua2, LIN Heming2, NITTA Kohhei3
Author information +
History +

Abstract

A novel phenolic rigid organic filler (KT) was melt-mixed with an isotactic polypropylene (iPP) to prepare a series of PP/KT composites, with or without maleic anhydride grafted polypropylene (MAPP) as compatilizer. The evolution of filler morphology during melt-mixing and melt-pressure processes was monitored by scanning electron microscope (SEM) and polarized optical microscope (POM). The influences of shear force, pressure time, filler content and MAPP concentration on the final filler dispersion were studied. We found that this rigid organic filler readily melted and dispersed homogenously into the iPP matrix through a fission-fusion process during the melt-mixing process. Thus a balanced dispersion, which was closely related to shear force and MAPP concentration, can be achieved. During the melt-pressure process, parts of the filler particles combined gradually through a coalescence process. However, the incorporation of MAPP can effectively inhibit the tendency to coalesce and refine the filler particles sizes into nanoscale. Thus, a series of PP/KT composites with controllable filler particles size and narrow size distribution can be obtained just by adjusting process conditions and MAPP concentration. In addition, due to the in-situ formation mechanism, the filler phase possessed a typical solid true-spherical shape.

Cite this article

Download citation ▾
QI Dongming, YANG Lei, WU Minghua, LIN Heming, NITTA Kohhei. Phenolic rigid organic filler/isotactic polypropylene composites. I. Preparation. Front. Chem. Sci. Eng., 2008, 2(3): 236‒241 https://doi.org/10.1007/s11705-008-0034-z

References

1. Yuan Q, Jiang W, Zhang H X, Yin J H, An L J, Li R K Y . Brittle-ductile transition in high-density polyethylene/glass-beadblends: effects of interparticle distance and temperature. J Polym Sci: Polym Phys, 2001, 39: 1855–1859. doi:10.1002/polb.1160
2. Liang J Z, Li R K . Brittle–ductile transitionin polypropylene filled with glass beads. Polymer, 1999, 40: 3191–3195. doi:10.1016/S0032‐3861(98)00532‐1
3. Wilbrink M W L, Argon A S, Cohen R E, Weinberg M . Toughenabilityof Nylon-6 with CaCO3 filler particles: newfindings and general principles. Polymer, 2001, 42: 10155–10180. doi:10.1016/S0032‐3861(01)00548‐1
4. Fellahi S, Chikhi N, Bakar M . Modification of epoxy resin with kaolin as a tougheningagent. J Appl Polym Sci, 2001, 82: 861–878. doi:10.1002/app.1918
5. Radonjič G, Šmit I . Phase morphology and mechanicalproperties of iPP/SEP blends. J Polym Sci:Polym Phy 2001, 39: 566–580. doi:10.1002/1099‐0488(20010301)39:5<566::AID‐POLB1030>3.0.CO;2‐P
6. Tang L X, Qu B J, Shen X F . Mechanical properties, morphological structure, and thermalbehavior of dynamically photocrosslinked PP/EPDM blends. J Appl Polym Sci, 2004, 92: 3371–3380. doi:10.1002/app.20340
7. Kim J Y, Chun B C . Effect of high density polyethyleneaddition and testing temperature on the mechanical and morphologicalproperties of polypropylene/ethylene-propylene diene terpolymer binaryblends. J Mater Sci, 2000, 35: 4833–4840. doi:10.1023/A:1004833014684
8. Ha C S, Cho Y W, Go J H, Cho W J . Dynamic mechanicalproperties of polypropylene-g-maleic anhydride and ethylene-propylene-dieneterpolymer blends: effect of blend preparation methods. J Appl Polym Sci, 2000, 77: 2777–2784. doi:10.1002/1097‐4628(20000919)77:12<2777::AID‐APP260>3.0.CO;2‐5
9. Xiao H W, Huang S Q, Jiang T . Morphology, rheology, and mechanical properties of dynamicallycured EPDM/PP blend: effect of curing agent dose variation. J Appl Polym Sci, 2004, 92: 357–362. doi:10.1002/app.20026
10. Yui H, Wu G Z, Sano H, Sumita M, Kino K . Morphology and electrical conductivityof injection-molded polypropylene/carbon black composites with additionof high-density polyethylene. Polymer, 2006, 47: 3599–3608. doi:10.1016/j.polymer.2006.03.064
11. Fekete E, Michler G H . Aggregation, fracture initiation,and strength of PP/CaCO3 composites. J Macromol Sci Phys, 1999, 38: 885–899. doi:10.1080/00222349908248146
12. Yang K, Yang Q, Li G X, Sun Y J, Feng D C . Mechanical properties and morphologiesof polypropylene with different sizes of calcium carbonate particles. Polymer composites, 2006, 27: 443–450. doi:10.1002/pc.20211
13. Ruan W H, Huang X B, Wang X H, Rong M Z, Zhang M Q . Effect of drawing induced dispersionof nano-silica on performance improvement of poly(propylene)-basednanocomposites. Macromol Rapid Commun, 2006, 27: 581–585. doi:10.1002/marc.200600001
14. Karger-Kocsis J . Polypropylene:structure, blends and composites. London: Chapman & Hall, 1995, Chapter 1
15. Thio Y S, Argon A S, Cohen R E, Weinberg M . Tougheningof isotactic polypropylene with CaCO3 particles. Polymer, 2002, 43: 3661–3674. doi:10.1016/S0032‐3861(02)00193‐3
16. Thomas S, Groeninckx G . Reactive compatibilisationof heterogeneous ethylene propylene rubber (EPM)/nylon 6 blends bythe addition of compatibiliser precursor EPM-g-MA. Polymer, 1999, 40: 5799–5819. doi:10.1016/S0032‐3861(98)00813‐1
17. Jose S, Francis B, Thomas S, Karger-Kocsis J . Morphologyand mechanical properties of polyamide 12/polypropylene blends inpresence and absence of reactive compatibiliser. Polymer, 2006, 47: 3874–3888. doi:10.1016/j.polymer.2006.03.046
18. Wu S . Ageneralized criterion for rubber toughening: The critical matrix ligamentthickness. J Appl Polym Sci, 1988, 35: 549–561. doi:10.1002/app.1988.070350220
19. Lamb H . Hydrodynamics,6th ed. NewYork: Cambridge University Press, 1932, 598
20. White J L, Liu D, Bumm S H . Development of dispersion in rubber-particle compoundsin internal and continuous mixers. J ApplPolym Sci, 2006, 102: 3940–3943. doi:10.1002/app.24241
21. Kim H S, Lee B H, Choi S W, Kim S M, Kim H J . The effect of types of maleic anhydride-graftedpolypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filledpolypropylene composites. Composites: ApplS, 2007, 38: 1473–1482. doi:10.1016/j.compositesa.2007.01.004
AI Summary AI Mindmap
PDF(327 KB)

Accesses

Citations

Detail

Sections
Recommended

/